
LETTER Communicated by Aapo Hyvarinen

A New Concept for Separability Problems in Blind Source
Separation

Fabian J. Theis
fabian@theis.name
Institute of Biophysics, University of Regensburg, 93040 Regensburg, Germany

The goal of blind source separation (BSS) lies in recovering the origi-
nal independent sources of a mixed random vector without knowing the
mixing structure. A key ingredient for performing BSS successfully is to
know the indeterminacies of the problem—that is, to know how the sepa-
rating model relates to the original mixing model (separability). For linear
BSS, Comon (1994) showed using the Darmois-Skitovitch theorem that
the linear mixing matrix can be found except for permutation and scaling.
In this work, a much simpler, direct proof for linear separability is given.
The idea is based on the fact that a random vector is independent if and
only if the Hessian of its logarithmic density (resp. characteristic function)
is diagonal everywhere. This property is then exploited to propose a new
algorithm for performing BSS. Furthermore, first ideas of how to general-
ize separability results based on Hessian diagonalization to more compli-
cated nonlinear models are studied in the setting of postnonlinear BSS.

1 Introduction

In independent component analysis (ICA), one tries to find statistically
independent data within a given random vector. An application of ICA
lies in blind source separation (BSS), where it is furthermore assumed that
the given vector has been mixed using a fixed set of independent sources.
The advantage of applying ICA algorithms to BSS problems in contrast to
correlation-based algorithms is that ICA tries to make the output signals as
independent as possible by also including higher-order statistics.

Since the introduction of independent component analysis by Hérault
and Jutten (1986), various algorithms have been proposed to solve the BSS
problem (Comon, 1994; Bell & Sejnowski, 1995; Hyvärinen & Oja, 1997;
Theis, Jung, Puntonet, & Lang, 2002). Good textbook-level introductions to
ICA are given in Hyvärinen, Karhunen, and Oja (2001) and Cichocki and
Amari (2002).

Separability of linear BSS states that under weak conditions to the sources,
the mixing matrix is determined uniquely by the mixtures except for per-
mutation and scaling, as showed by Comon (1994) using the Darmois-
Skitovitch theorem. We propose a direct proof based on the concept of
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separated functions, that is, functions that can be split into a product of
one-dimensional functions (see definition 1). If the function is positive, this
is equivalent to the fact that its logarithm has a diagonal Hessian everywhere
(see lemma 1 and theorem 1). A similar lemma has been shown by Lin (1998)
for what he calls block diagonal Hessians. However, he omits discussion of
the separatedness of densities with zeros, which plays a minor role for the
separation algorithm he is interested in but is important for deriving sepa-
rability. Using separatedness of the density, respectively, the characteristic
function (Fourier transformation), of the random vector, we can then show
separability directly (in two slightly different settings, for which we pro-
vide a common framework). Based on this result, we propose an algorithm
for linear BSS by diagonalizing the logarithmic density of the Hessian. We
recently found that this algorithm has already been proposed (Lin, 1998),
but without considering the necessary assumptions for successful algorithm
application. Here we give precise conditions for when to apply this algo-
rithm (see theorem 3) and show that points satisfying these conditions can
indeed be found if the sources contain at most one gaussian component
(see lemma 5). Lin uses a discrete approximation of the derivative oper-
ator to approximate the Hessian. We suggest using kernel-based density
estimation, which can be directly differentiated. A similar algorithm based
on Hessian diagonalization has been proposed by Yeredor (2000) using the
characteristic function of a random vector. However, the characteristic func-
tion is complex valued, and additional care has to be taken when applying
a complex logarithm. Basically, this is well defined locally only at nonzeros.
In algorithmic terms, the characteristic function can be easily approximated
by samples (which is equivalent to our kernel-based density approximation
using gaussians before Fourier transformation). Yeredor suggests joint diag-
onalization of the Hessian of the logarithmic characteristic function (which
is problematic because of the nonuniqueness of the complex logarithm)
evaluated at several points in order to avoid the locality of the algorithm.
Instead of joint diagonalization, we use a combined energy function based
on the previously defined separator, which also takes into account global
information but does not have the drawback of being singular at zeros of the
density, respectively, characteristic function. Thus, the algorithmic part of
this article can be seen as a general framework for the algorithms proposed
by Lin (1998) and Yeredor (2000).

Section 2 introduces separated functions, giving local characterizations
of the densities of independent random vectors. Section 3 then introduces
the linear BSS model and states the well-known separability result. After
giving an easy and short proof in two dimensions with positive densities,
we provide a characterization of gaussians in terms of a differential equa-
tion and provide the general proof. The BSS algorithm based on finding
separated densities is proposed and studied in section 4. We finish with
a generalization of the separability for the postnonlinear mixture case in
section 5.
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2 Separated and Linearly Separated Functions

Definition 1. A function f : Rn → C is said to be separated, respectively,
linearly separated, if there exist one-dimensional functions g1, . . . , gn : R → C

such that f (x) = g1(x1) · · · gn(xn) respectively f (x) = g1(x1) + · · · + gn(xn) for
all x ∈ Rn.

Note that the functions gi are uniquely determined by f up to a scalar
factor, respectively, an additive constant. If f is linearly separated, then exp f
is separated. Obviously the density function of an independent random
vector is separated. For brevity, we often use the tensor product and write
f ≡ g1 ⊗ · · · ⊗ gn for separated f , where for any functions h, k defined on a
set U, h ≡ k if h(x) = k(x) for all x ∈ U.

Separatedness can also be defined on any open parallelepiped (a1, b1) ×
· · · × (an, bn) ⊂ Rn in the obvious way. We say that f is locally separated
at x ∈ Rn if there exists an open parallelepiped U such that x ∈ U and
f |U is separated. If f is separated, then f is obviously everywhere locally
separated. The converse, however, does not necessarily hold, as shown in
Figure 1.
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Figure 1: Density of a random vector S with a locally but not globally separated
density. Here, pS := cχ[−2,2]×[−2,0]∪[0,2]×[1,3] where χU denotes the function that is
1 on U and 0 everywhere else. Obviously, pS is not separated globally, but is
separated if restricted to squares of length < 1. Plotted is a smoothed version of
pS.
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The function f is said to be positive if f is real and f (x) > 0 for all x ∈ Rn,
and nonnegative if f is real and f (x) ≥ 0 for all x ∈ Rn. A positive function
f is separated if and only if ln f is linearly separated.

Let Cm(U, V) be the ring of all m-times continuously differentiable func-
tions from U ⊂ Rn to V ⊂ C, U open. For a Cm-function f , we write
∂i1 · · · ∂im f := ∂m f/∂xi1 · · · ∂xim for the m-fold partial derivatives. If f ∈
C2(Rn, C), denote with the symmetric (n × n)-matrix Hf (x) := (

∂i∂j f (x)
)n

i,j=1
the Hessian of f at x ∈ Rn.

Linearly separated functions can be classified using their Hessian (if it
exists):

Lemma 1. A function f ∈ C2(Rn, C) is linearly separated if and only if Hf (x)

is diagonal for all x ∈ Rn.

A similar lemma for block diagonal Hessians has been shown by Lin
(1998).

Proof. If f is linearly separated, its Hessian is obviously diagonal every-
where by definition.

Assume the converse. We prove that f is separated by induction over
the dimension n. For n = 1, the claim is trivial. Now assume that we have
shown the lemma for n − 1. By induction assumption, f (x1, . . . , xn−1, 0) is
linearly separated, so

f (x1, . . . , xn−1, 0) = g1(x1) + · · · + gn−1(xn−1)

for all xi ∈ R and some functions gi on R. Note that gi ∈ C2(R, C).
Define a function h : R → C by h(y) := ∂n f (x1, . . . , xn−1, y), y ∈ R,

for fixed x1, . . . , xn−1 ∈ R. Note that h is independent of the choice of the
xi, because ∂n∂i f ≡ ∂i∂n f is zero everywhere, so xi �→ ∂n f (x1, . . . , xn−1, y)

is constant for fixed xj, y ∈ R, j �= i. By definition, h ∈ C1(R, C), so h is
integrable on compact intervals. Define k : R → C by k(y) := ∫ y

0 h. Then

f (x1, . . . , xn) = g1(x1) + · · · + gn−1(xn−1) + k(xn) + c,

where c ∈ C is a constant, because both functions have the same derivative
and Rn is connected. If we set gn := k + c, the claim follows.

This lemma also holds for functions defined on any open parallelepiped
(a1, b1) × · · · × (an, bn) ⊂ Rn. Hence, an arbitrary real-valued C2-function f
is locally separated at x with f (x) �= 0 if and only if the Hessian of ln | f | is
locally diagonal.

For a positive function f , the Hessian of its logarithm is diagonal every-
where if it is separated, and it is easy to see that for positive f , the converse
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also holds globally (see theorem 1(ii)). In this case, we have for i �= j,

0 ≡ ∂i∂j ln f ≡ f∂i∂j f − (∂i f )(∂j f )
f 2 ,

so f is separated if and only if

f∂i∂j f ≡ (∂i f )(∂j f )

for i �= j or even i < j. This motivates the following definition:

Definition 2. For i �= j, the operator

Rij : C2(Rn, C) → C0(Rn, C)

f �→ Rij[ f ] := f∂i∂j f − (∂i f )(∂j f )

is called the ij-separator.

Theorem 1. Let f ∈ C2(Rn, C).

i. If f is separated, then Rij[ f ] ≡ 0 for i �= j or, equivalently,

f∂i∂j f ≡ (∂i f )(∂j f ) (2.1)

holds for i �= j.

ii. If f is positive and Rij[ f ] ≡ 0 holds for all i �= j, then f is separated.

If f is assumed to be only nonnegative, then f is locally separated but
not necessarily globally separated (if the support of f has more than one
component). See Figure 1 for an example of a nonseparated density with
R12[ f ] ≡ 0.

Proof of Theorem 1.i. If f is separated, then f (x) = g1(x1) · · · gn(xn) or
short f ≡ g1 ⊗ · · · ⊗ gn, so

∂i f ≡ g1 ⊗ · · · ⊗ gi−1 ⊗ g′
i ⊗ gi+1 ⊗ · · · ⊗ gn

and

∂i∂j f ≡ g1 ⊗ · · · ⊗ gi−1 ⊗ g′
i ⊗ gi+1 ⊗ · · · ⊗ gj−1 ⊗ g′

j ⊗ gj+1 ⊗ · · · ⊗ gn

for i < j. Hence equation 2.1 holds.
ii. Now assume the converse and let f be positive. Then according to the

remarks after lemma 1, Hln f (x) is everywhere diagonal, so lemma 1 shows
that ln f is linearly separated; hence, f is separated.
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Some trivial properties of the separator Rij are listed in the next lemma:

Lemma 2. Let f, g ∈ C2(Rn, C), i �= j and α ∈ C. Then

Rij[αf ] = α2Rij[ f ]

and

Rij[ f + g] = Rij[ f ] + Rij[g] + f∂i∂jg + g∂i∂j f − (∂i f )(∂jg) − (∂ig)(∂j f ).

3 Separability of Linear BSS

Consider the noiseless linear instantaneous BSS model with as many sources
as sensors:

X = AS, (3.1)

with an independent n-dimensional random vector S and A ∈ Gl(n). Here,
Gl(n) denotes the general linear group of Rn, that is, the group of all invert-
ible (n × n)-matrices.

The task of linear BSS is to find A and S given only X. An obvious in-
determinacy of this problem is that A can be found only up to scaling and
permutation because for scaling L and permutation matrix P,

X = ALPP−1L−1S,

and P−1L−1S is also independent. Here, an invertible matrix L ∈ Gl(n)

is said to be a scaling matrix if it is diagonal. We say two matrices B, C
are equivalent, B ∼ C, if C can be written as C = BPL with a scaling
matrix L ∈ Gl(n) and an invertible matrix with unit vectors in each row
(permutation matrix) P ∈ Gl(n). Note that PL = L′P for some scaling matrix
L′ ∈ Gl(n), so the order of the permutation and the scaling matrix does not
play a role for equivalence. Furthermore, if B ∈ Gl(n) with B ∼ I, then also
B−1 ∼ I, and, more generally if BC ∼ A, then C ∼ B−1A. According to the
above, solutions of linear BSS are equivalent. We will show that under mild
assumptions to S, there are no further indeterminacies of linear BSS.

S is said to have a gaussian component if one of the Si is a one-dimensional
gaussian, that is, pSi(x) = d exp(−ax2 + bx + c) with a, b, c, d ∈ R, a > 0, and
S has a deterministic component if one Si is deterministic, that is, constant.

Theorem 2 (Separability of linear BSS). Let A ∈ Gl(n) and S be an indepen-
dent random vector. Assume one of the following:

i. S has at most one gaussian or deterministic component, and the covariance
of S exists.
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ii. S has no gaussian component, and its density pS exists and is twice contin-
uously differentiable.

Then if AS is again independent, A is equivalent to the identity.

So A is the product of a scaling and a permutation matrix. The important
part of this theorem is assumption i, which has been used to show separabil-
ity by Comon (1994) and extended by Eriksson and Koivunen (2003) based
on the Darmois-Skitovitch theorem (Darmois, 1953; Skitovitch, 1953). Using
this theorem, the second part can be easily shown without C2-densities.

Theorem 2 indeed proves separability of the linear BSS model, because
if X = AS and W is a demixing matrix such that WX is independent, then
WA ∼ I, so W−1 ∼ A as desired.

We will give a much easier proof without having to use the Darmois-
Skitovitch theorem in the following sections.

3.1 Two-Dimensional Positive Density Case. For illustrative purposes
we will first prove separability for a two-dimensional random vector S with
positive density pS ∈ C2(R2, R). Let A ∈ Gl(2). It is enough to show that if
S and AS are independent, then either A ∼ I or S is gaussian.

S is assumed to be independent, so its density factorizes:

pS(s) = g1(s1)g2(s2),

for s ∈ R2. First, note that the density of AS is given by

pAS(x) = | det A|−1pS(A−1x) = cg1(b11x1 + b12x2)g2(b21x1 + b22x2)

for x ∈ R2, c �= 0 fixed. Here, B = (bij) = A−1. AS is also assumed to be
independent, so pAS(x) is separated.

pS was assumed to be positive; then so is pAS. Hence, ln pAS(x) is linearly
separated, so

∂1∂2 ln pAS(x) = b11b12h′′
1(b11x1 + b12x2) + b21b22h′′

2(b21x1 + b22x2) = 0

for all x ∈ R2, where hi := ln gi ∈ C2(R2, R). By setting y := Bx, we therefore
have

b11b12h′′
1(y1) + b21b22h′′

2(y2) = 0 (3.2)

for all y ∈ R2, because B is invertible.
Now, if A (and therefore also B) is equivalent to the identity, then equa-

tion 3.2 holds. If not, then A, and hence also B, have at least three nonzero
entries. By equation 3.2 the fourth entry has to be nonzero, because the
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h′′
i are not zero (otherwise gi(yi) = exp(ayi + b), which is not integrable).

Furthermore,

b11b12h′′
1(y1) = −b21b22h′′

2(y2)

for all y ∈ R2, so the h′′
i are constant, say, h′′

i ≡ ci, and ci �= 0, as noted
above. Therefore, the hi are polynomials of degree 2, and the gi = exp hi are
gaussians (ci < 0 because of the integrability of the gi).

3.2 Characterization of Gaussians. In this section, we show that among
all densities, respectively, characteristic functions, the gaussians satisfy a
special differential equation.

Lemma 3. Let f ∈ C2(R, C) and a ∈ C with

af 2 − f f ′′ + f ′2 ≡ 0. (3.3)

Then either f ≡ 0 or f (x) = exp
( a

2 x2 + bx + c
)
, x ∈ R, with constants b, c ∈ C.

Proof. Assume f �≡ 0. Let x0 ∈ R with f (x0) �= 0. Then there exists
a nonempty interval U := (r, s) containing x0 such that a complex loga-
rithm log is defined on f (U). Set g := log f |U. Substituting exp g for f in
equation 3.3 yields

a exp(2g) − exp(g)(g′′ + g′2) exp(g) + g′2 exp(2g) ≡ 0,

and therefore g′′ ≡ a. Hence, g is a polynomial of degree ≤ 2 with leading
coefficient a

2 .
Furthermore,

lim
x→r+ f (x) �= 0

lim
x→s− f (x) �= 0,

so f has no zeros at all because of continuity. The argument above with
U = R shows the claim.

If, furthermore, f is real nonnegative and integrable with integral 1 (e.g.,
if f is the density of a random variable), then f has to be the exponential of
a real-valued polynomial of degree precisely 2; otherwise, it would not be
integrable. So we have the following corollary:
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Corollary 1. Let X be a random variable with twice continuously differentiable
density pX satisfying equation 3.3. Then X is gaussian.

If we do not want to assume that the random variable has a density, we
can use its characteristic function (Bauer, 1996) instead to show an equivalent
result:

Corollary 2. Let X be a random variable with twice continuously differentiable
characteristic function X̂(x) := EX(exp ixX) satisfying equation 3.3. Then X is
gaussian or deterministic.

Proof. Using X̂(0) = 1, lemma 3 shows that X̂(x) = exp( a
2 x2 + bx). More-

over, from X̂(−x) = X̂(x), we get a ∈ R and b = ib′ with real b′. And |X̂| ≤ 1
shows that a ≤ 0. So if a = 0, then X is deterministic (at b′), and if a �= 0,
then X has a gaussian distribution with mean b′ and variance −a−1.

3.3 Proof of Theorem 2. We will now prove linear separability; for this,
we will use separatedness to show that some source components have to be
gaussian (using the results from above) if the mixing matrix is not trivial.
The main argument is given in the following lemma:

Lemma 4. Let gi ∈ C2(R, C) and B ∈ Gl(n) such that f (x) := g1⊗· · ·⊗gn(Bx)

is separated. Then for all indices l and i �= j with bliblj �= 0, gl satisfies the differential
equation 3.3 with some constant a.

Proof. f is separated, so by theorem 1i.

Rij[ f ] ≡ f∂i∂j f − (∂i f )(∂j f ) ≡ 0 (3.4)

holds for i < j. The ingredients of this equation can be calculated for i < j
as follows:

∂i f (x) =
∑

k

bkig1 ⊗ · · · ⊗ g′
k ⊗ · · · ⊗ gn(Bx)

(∂i f )(∂j f )(x) =
∑
k,l

bkiblj(g1 ⊗ · · · ⊗ g′
k ⊗ · · · ⊗ gn)

× (g1 ⊗ · · · ⊗ g′
l ⊗ · · · ⊗ gn)(Bx)

∂i∂j f (x) =
∑

k

bki(bkjg1 ⊗ · · · ⊗ g′′
k ⊗ · · · ⊗ gn

+
∑
l�=k

bljg1 ⊗ · · · ⊗ g′
k ⊗ · · · ⊗ g′

l ⊗ · · · ⊗ gn)(Bx).
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Putting this in equation 3.4 yields

0 = ( f∂i∂j f − (∂i f )(∂j f ))(x)

=
∑

k

bkibkj((g1 ⊗ · · · ⊗ gn)(g1 ⊗ · · · ⊗ g′′
k ⊗ · · · ⊗ gn)

− (g1 ⊗ · · · ⊗ g′
k ⊗ · · · ⊗ gn)2)(Bx)

=
∑

k

bkibkjg2
1 ⊗ · · · ⊗ g2

k−1 ⊗
(

gkg′′
k − g′2

k

)
⊗ g2

k+1 ⊗ · · · ⊗ g2
n(Bx)

for x ∈ Rn. B is invertible, so the whole function is zero:

∑
k

bkibkjg2
1 ⊗ · · · ⊗ g2

k−1 ⊗
(

gkg′′
k − g′2

k

)
⊗ g2

k+1 ⊗ · · · ⊗ g2
n ≡ 0. (3.5)

Choose x ∈ Rn with gk(xk) �= 0 for k = 1, . . . , n. Evaluating equation 3.5
at (x1, . . . , xl−1, y, xl+1, . . . , xn) for variable y ∈ R and dividing the resulting
one-dimensional equation by the constant g2

1(x1) · · · g2
l−1(xl−1)g2

l+1(xl+1) · · ·
g2

n(xn) shows

bliblj

(
glg′′

l − g′2
l

)
(y) = −

∑
k �=l

bkibkj
gkg′′

k − g′2
k

g2
k

(xk)

 g2
l (y) (3.6)

for y ∈ R. So for indices l and i �= j with bliblj �= 0, it follows from equation
3.6 that there exists a ∈ C such that gk satisfies the differential equation
ag2

l − glg′′
l + g′2

l ≡ 0, that is, equation 3.3.

Proof of Theorem 2. i. S is assumed to have at most one gaussian or de-
terministic component and existing covariance. Set X := AS.

We first show using whitening that A can be assumed to be orthogonal.
For this, we can assume S and X to have no deterministic component at all
(because arbitrary choice of the matrix coefficients of the deterministic com-
ponents does not change the covariance). Hence, by assumption, Cov(X)

is diagonal and positive definite, so let D1 be diagonal invertible with
Cov(X) = D2

1. Similarly, let D2 be diagonal invertible with Cov(S) = D2
2.

Set Y := D−1
1 X and T := D−1

2 S, that is, normalize X and S to covariance I.
Then

Y = D−1
1 X = D−1

1 AS = D−1
1 AD2T
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and T, D−1
1 AD2 and Y satisfy the assumption, and D−1

1 AD2 is orthogonal
because

I = Cov(Y)

= E(YY�)

= E(D−1
1 AD2TT�D2A�D−1

1 )

= (D−1
1 AD2)(D−1

1 AD2)
�.

So without loss of generality, let A be orthogonal.
Now let Ŝ(s) := ES(exp is�S) be the characteristic function of S. By as-

sumption, the covariance (and hence the mean) of S exists, so Ŝ ∈ C2(Rn, C)

(Bauer, 1996). Furthermore, since S is assumed to be independent, its char-
acteristic function is separated: Ŝ ≡ g1 ⊗ · · · ⊗ gn, where gi ≡ Ŝi. The char-
acteristic function of AS can easily be calculated as

ÂS(x) = ES(exp ix�AS) = Ŝ(A�x) = g1 ⊗ · · · ⊗ gn(A�x)

for x ∈ Rn. Let B := (bij) = A�. Since AS is also assumed to be independent,
f (x) := ÂS(x) = g1 ⊗ · · · ⊗ gn(Bx) is separated.

Now assume that A �∼ I. Using orthogonality of B = A�, there exist
indices k �= l and i �= j with bkibkj �= 0 and bliblj �= 0. Then according
to lemma 4, gk and gl satisfy the differential equation 3.3. Together with
corollary 2, this shows that both Sk and Sl are gaussian, which is a contra-
diction to the assumption.

ii. Let S be an n-dimensional independent random vector with density
pS ∈ C2(Rn, R) and no gaussian component, and let A ∈ Gl(n). S is assumed
to be independent, so its density factorizes pS ≡ g1 ⊗ · · · ⊗ gn. The density
of AS is given by

pAS(x) = | det A|−1pS(A−1x) = | det A|−1g1 ⊗ · · · ⊗ gn(Ax)

for x ∈ Rn. Let B := (bij) = A−1. AS is also assumed to be independent, so

f (x) := | det A|pAS(x) = g1 ⊗ · · · ⊗ gn(Bx)

is separated.
Assume A �∼ I. Then also B = A−1 �∼ I, so there exist indices l and

i �= j with bliblj �= 0. Hence, it follows from lemma 4 that gl satisfies the
differential equation 3.3. But gl is a density, so according to corollary 1 the
lth component of S is gaussian, which is a contradiction.
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4 BSS by Hessian Diagonalization

In this section, we use the theory already set out to propose an algorithm for
linear BSS, which can be easily extended to nonlinear settings as well. For
this, we restrict ourselves to using C2-densities. A similar idea has already
been proposed in Lin (1998), but without dealing with possibly degenerated
eigenspaces in the Hessian. Equivalently, we could also use characteristic
functions instead of densities, which leads to a related algorithm (Yeredor,
2000).

If we assume that Cov(S) exists, we can use whitening as seen in the proof
of theorem 2i (in this context, also called principal component analysis) to
reduce the general BSS model, equation 3.2, to

X = AS (4.1)

with an independent n-dimensional random vector S with existing covari-
ance I and an orthogonal matrix A. Then Cov(X) = I. We assume that S
admits a C2−density pS. The density of X is then given by

pX(x) = pS(A�x)

for x ∈ Rn, because of the orthogonality of A. Hence,

pS ≡ pX ◦ A.

Note that the Hessian of the composition of a function f ∈ C2(Rn, R)

with an n × n-matrix A can be calculated using the Hessian of f as follows:

Hf◦A(x) = AHf (Ax)A�.

Let s ∈ Rn with pS(s) > 0. Then locally at s, we have

Hln pS(s) = Hln pX◦A(s) = AHln pX(As)A�. (4.2)

pS is assumed to be separated, so Hln pS(s) is diagonal, as seen in section 2.

Lemma 5. Let X := AS with an orthogonal matrix A and S, an independent
random vector with C2-density, and at most one gaussian component. Then there
exists an open set U ⊂ Rn such that for all x ∈ U, pX(x) �= 0 and Hln pX(x) has n
different eigenvalues.

Proof. Assume not. Then there exists no x ∈ Rn at all with pX(x) �= 0 and
Hln pX(x) having n different eigenvalues because otherwise, due to continu-
ity, these conditions would also hold in an open neighborhood of x.
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Using equation 4.2 the logarithmic Hessian of pS has at every s ∈ Rn with
pS(s) > 0 at least two of the same eigenvalues, say, λ(s) ∈ R. Hence, since S
is independent, Hln pS(s) is diagonal, so locally,

(
ln pSi

)′′
(s) = (

ln pSj

)′′
(s) = λ(s)

for two indices i �= j. Here, we have used continuity of s �→ Hln pS(s) show-
ing that the two eigenvalues locally lie in the same two dimensions i and
j. This proves that λ(s) is locally constant in directions i and j. So locally
at points s with pS(s) > 0, Si and Sj are of the type exp P, with P being a
polynomial of degree ≤ 2. The same argument as in the proof of lemma 3
then shows that pSi and pSj have no zeros at all. Using the connectedness
of R proves that Si and Sj are globally of the type exp P, hence gaussian
(because of

∫
R

pSk = 1), which is a contradiction.

Hence, we can assume that we have found x(0) ∈ Rn with Hln pX(x(0))

having n different eigenvalues (which is equivalent to saying that every
eigenvalue is of multiplicity one), because due to lemma 5, this is an open
condition, which can be found algorithmically. In fact, most densities in
practice turn out to have logarithmic Hessians with n different eigenvalues
almost everywhere. In theory however, U in lemma 5 cannot be assumed to
be, for example, dense or Rn \U to have measure zero, because if we choose
pS1 to be a normalized gaussian and pS2 to be a normalized gaussian with a
very localized small perturbation at zero only, then U cannot be larger than
(−ε, ε) × R.

By diagonalization of Hln pX(x(0)) using eigenvalue decomposition (prin-
cipal axis transformation), we can find the (orthogonal) mixing matrix A.
Note that the eigenvalue decomposition is unique except for permutation
and sign scaling because every eigenspace (in which A is only unique up
to orthogonal transformation) has dimension one. Arbitrary scaling inde-
terminacy does not occur because we have forced S and X to have unit
variances. Using uniqueness of eigenvalue decomposition and theorem 2,
we have shown the following theorem:

Theorem 3 (BSS by Hessian calculation). Let X = AS with an independent
random vector S and an orthogonal matrix A. Let x ∈ Rn such that locally at x,
X admits a C2-density pX with pX(x) �= 0. Assume that Hln pX(x) has n different
eigenvalues (see lemma 5). If

EHln pX(x)E� = D

is an eigenvalue decomposition of the Hessian of the logarithm of pX at x, that is, E
orthogonal, D diagonal, then E ∼ A, so E�X is independent.
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Furthermore, it follows from this theorem that linear BSS is a local prob-
lem as proven already in Theis, Puntonet, and Lang (2003) using the restric-
tion of a random vector.

4.1 Example for Hessian Diagonalization BSS. In order to illustrate
the algorithm of local Hessian diagonalization, we give a two-dimensional
example. Let S be a random vector with densities

pS1(s1) = 1
2
χ[−1,1](s1)

pS2(s2) = 1√
2π

exp
(

−1
2

s2
2

)
where χ[−1,1] is one on [−1, 1] and zero everywhere else. The orthogonal
mixing matrix A is chosen to be

A = 1√
2

(
1 1

−1 1

)
.

The mixture density pX of X := AS then is (det A = 1),

pX(x) = 1

2
√

2π
χ[−1,1]

(
1√
2
(x1 − x2)

)
exp

(
−1

4
(x1 + x2)

2
)

,

for x ∈ R2. pX is positive and C2 in a neighborhood around 0. Then

∂1 ln pX(x) = ∂2 ln pX(x) = −1
2
(x1 + x2)

∂2
1 ln pX(x) = ∂2

2 ln pX(x) = ∂1∂2 ln pX(x) = −1
2

for x with |x| < 1
2 , and the Hessian of the logarithmic densities is

Hln pX(x) = −1
2

(
1 1
1 1

)
independent on x in a neighborhood around 0. Diagonalization of Hln pX(0)

yields(−1 0
0 0

)
,

and this equals AHln pX(0)A�, as stated in theorem 3.
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4.2 Global Hessian Diagonalization Using Kernel-Based Density Ap-
proximation. In practice, it is usually not possible to approximate the den-
sity locally with sufficiently high accuracy, so a better approximation using
the typically global information of X has to be found. We suggest using
kernel-based density estimation to get an energy function with minima at
the BSS solutions together with a global Hessian diagonalization in the fol-
lowing.

The idea is to construct a measure for separatedness of the densities
(hence independence) based on theorem 1. A possible measure could be the
norm of the summed-up separators

∑
i<j Rij[ f ]. In order for this to be cal-

culable, we choose only a set of points p(i) where we evaluate the difference
and minimize

∑
k
∑

i<j Rij[ f ](p(k))2 at those points. Although in the linear
noiseless case, calculation of the Hessian at only one point would be enough,
using an energy function of this type ensures using global information of
the densities while averaging over possible local errors.

First, we need to approximate the density function. For this, let X ∈ Rn

be an n-dimensional random vector with ν independent and identically
distributed samples x(1), . . . , x(ν) ∈ Rn. Let

ϕ : R
n → R

x �→ 1
σ n

√
(2π)n

exp
(

− 1
2σ 2 ‖x‖2

)

be the n-dimensional-centered independent gaussian with fixed variance
σ 2 > 0. For ease of notation, denote κ := 1

2σ 2 .
Define the approximated density p̂X of X by

p̂X(x) := 1
ν

ν∑
i=1

ϕ(x − x(i)). (4.3)

If l → ∞, p̂X converges to pX in the space of all integrable functions if σ is
chosen appropriately. This can be shown using the central limit theorem.
Figure 2 depicts the approximation of a Laplacian using equation 4.3.

The partial derivatives of ϕ can be calculated as

∂iϕ(x) = −2κxiϕ(x)

∂i∂jϕ(x) = 4κ2xixjϕ(x) (4.4)

for i �= j. ϕ is separated, so R[ϕ] ≡ 0. Note that p̂X ∈ C∞(Rn, R) is positive.
So according to theorem 1 p̂X is separated if and only if Rij[p̂X] ≡ 0 for i < j.
And since p̂X is an approximation of pX, separatedness of p̂X also induces
approximate independence of X.
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Figure 2: Independent Laplacian density pS(s) = 1
2 exp(−|x1| − |x2|): theoretic

(left) and approximated (right) densities. For the approximation, 1000 samples
and gaussian kernel approximation (see equation 4.3) with standard deviation
0.37 were used.

Rij[p̂X] can be calculated using lemma 2—here Rij[ϕ(x − x(k))] ≡ 0—and
equation 4.4:

Rij[p̂X](x) = 1
ν2 Rij

[
ν∑

k=1

ϕ(x − x(k))

]

= 1
ν2

∑
k �=l

ϕ
(

x − x(k)
)

∂i∂jϕ
(

x − x(l)
)

− (∂iϕ)
(

x − x(k)
)

(∂jϕ)
(

x − x(l)
)

= 4κ2

ν2

∑
k �=l

ϕ
(

x − x(k)
)

ϕ
(

x − x(l)
) (

x(k)
i − x(l)

i

) (
xj − x(l)

j

)

= 4κ2

ν2

∑
k<l

ϕ
(

x − x(k)
)

ϕ
(

x − x(l)
) (

x(k)
i − x(l)

i

) (
x(k)

j − x(l)
j

)
.

This function is zero for i < j if and only if p̂X is separated. For linear
BSS, it would be enough to check this at one point in general position (see
theorem 3), but for robustness, we want to require Rij[p̂X] to be zero (or as
close to zero as possible) at all sample points. So the desired independence
estimator can be calculated as

E(x1, . . . , x(n)) := E :=
ν∑

m=1

∑
i<j

(Rij[p̂X](x(m)))2;
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hence,

E = (σ 2ν)−4
∑

m

∑
i<j

(∑
k<l

ϕ(x − x(k))ϕ(x − x(l))(x(k)
i − x(l)

i )(x(k)
j − x(l)

j )

)2

.

Minimizing the function

ε : Gl(n) → R

W �→ E(Wx1, . . . , Wx(n))

then yields the desired demixing matrix with W−1 ∼ A according to
theorem 2. ε can be minimized using the usual techniques—for example,
global search, gradient descent, or fixed-point search. Figure 3 shows the
energy function of an example mixture of two Laplacians. E is minimal at
the points where WX is independent.

0 0.5 1 1.5 2 2.5 3 3.51

2

3

4

5

6

7

8x10−3

Figure 3: Energy function W �→ E(WX) of a mixture X of two Laplacians using
as mixing matrix A a rotation by 45 degrees. One hundred samples were used,
and E is plotted in steps of 0.1. The minima of E clearly lie at 1

4 π and 3
4 π , as

desired.
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Note that E represents a new approximate measure of independence.
Therefore, the linear BSS algorithm can now be readily generalized to non-
linear situations by finding an appropriate parameterization of the possibly
nonlinear separating model.

The proposed algorithm basically performs a global diagonalization of
the logarithmic Hessian after prewhitening. Interestingly, this is similar to
traditional BSS algorithms based on joint diagonalization such as JADE
(Cardoso & Souloumiac, 1993) using cumulant matrices or AMUSE (Tong,
Liu, Soan, & Huang, 1991) and SOBI (Belouchrani, Meraim, Cardoso, &
Moulines, 1997) employing time decorrelation. Instead of using a global en-
ergy function as proposed above, we could therefore also jointly diagonalize
a given set of Hessians (respectively, separator matrices, as above; see also
Yeredor, 2000). Another relation to previously proposed ICA algorithms
lies in the kernel approximation technique. Gaussian or generalized gaus-
sian kernels have already been used in the field of independent component
analysis to model the source densities (Lee & Lewicki, 2000; Habl, Bauer,
Putonet, Rodriguez-Alvarez, & Lang, 2001), thus giving an estimate of the
score function used in Bell-Sejnowski-type semiparametric algorithms (Bell,
& Sejnowski, 1995) or enabling direct separation using a maximum likeli-
hood parameter estimation. Our algorithm also uses density approximation,
but employs this for the mixture density, which can be problematic in higher
dimensions. A different approach not involving density approximation is a
direct sample-based Hessian estimation similar to Lin (1998).

5 Separability of Postnonlinear BSS

In this section, we show how to use the idea of Hessian diagonalization in
order to give separability proofs in nonlinear situations, more precisely, in
the setting of postnonlinear BSS. After stating the postnonlinear BSS model
and the general (to the knowledge of the author, not yet proven) separability
theorem, we will prove postnonlinear separability in the case of random
vectors with distributions that are somewhere locally constant and nonzero
(e.g., uniform distributions). A possible proof of postnonlinear separability
has been suggested by Taleb and Jutten (1999); however, the proof applies
only to densities with at least one zero and furthermore contains an error
rendering the proof applicable only to restricted situations.

Definition 3. A function f : Rn → Rn is called diagonal if each component
fi(x) of f(x) depends on only the variable xi.

In this case, we often omit the other variables and write f(x1, . . . , xn) =
( f1(x1), . . . , fn(xn)); so f ≡ f1 × · · · × fn where × denotes the Cartesian
product.
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Consider now the postnonlinear BSS model,

X = f(AS), (5.1)

where again S is an independent random vector, A ∈ Gl(n), and f is a diag-
onal nonlinearity. We assume the components of f to be injective analytical
functions with invertible Jacobian at every point (locally diffeomorphic).

Definition 4. An invertible matrix A ∈ Gl(n) is said to be mixing if A has at
least two nonzero entries in each row.

Note that if A is mixing, then A′, A−1, and ALP for scaling matrix L and
permutation matrix P are also mixing.

Postnonlinear BSS is a generalization of linear BSS, so the indeterminacies
of postnonlinear ICA contain at least the indeterminacies of linear BSS:
A can be reconstructed only up to scaling and permutation. In the linear
case, affine linear transformation is ignored. Here, of course, additional
indeterminacies come into play because of translation: fi can be recovered
only up to a constant. Also, if L ∈ Gl(n) is a scaling matrix, then

f(AS) = (f ◦ L)((L−1A)S),

so f and A can interchange scaling factors in each component. Another ob-
vious indeterminacy could occur if A is not general enough. If, for example,
A = I, then f(S) is already independent, because independence is invariant
under diagonal nonlinear transformation; so f cannot be found in this case.
If we assume, however, that A is mixing, then we will show that except for
scaling interchange between f and A, no more indeterminacies than in the
affine linear case exist.

Theorem 4 (separability of postnonlinear BSS). Let A, W ∈ Gl(n) be mix-
ing, h : Rn → Rn be a diagonal bijective function with analytical locally diffeo-
morphic components, and S be an independent random vector with at most one
gaussian component and existing covariance. If W(h(AS)) is independent, then
there exists a scaling matrix L ∈ Gl(n) and p ∈ Rn with LA ∼ W−1 and h ≡ L+p.

If analyticity of the components of h is not assumed, then h ≡ L + p can
only hold on {As|pS(s) �= 0}.

If f ◦ A is the mixing model, W ◦ g is the separating model. Putting the
two together, we get the above mixing-separating model. Since A has to be
assumed to be mixing, we can assume W to be mixing as well because the
inverse of a matrix that is mixing is again mixing. Furthermore, the mixing-
separating model is assumed to be bijective—hence, A and W invertible and
h bijective—because otherwise trivial solutions as, for example, h ≡ c for a
constant c ∈ R, would also be solutions.
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We will show the theorem in the case of S and X with components having
somewhere locally constant nonzero C2-densities. An alternative geometric
idea of how to prove theorem 4 for bounded sources in two dimensions
is mentioned in Babaie-Zadeh, Jutten, and Nayebi (2002) and extended in
Theis and Gruber (forthcoming). Note that in our case, as well as in the above
restrictive cases, the assumption that S has at most one gaussian component
holds trivially.

Proof of Theorem 4 (with Locally-Constant Nonzero C2-Densities). Let h =
h1 × · · · × hn with bijective C∞-functions hi : R → R. We have to show only
that the h′

i are constant. Then h is affine linear, say, h ≡ L + p, with diagonal
matrix L ∈ Gl(n) and a vector p ∈ Rn. Hence, WLAS+Wp, and then WLAS
is independent, so using linear separability, theorem 2i, WLA ∼ I, therefore,
LA ∼ W−1.

Let X := W(h(AS)). The density of this transformed random vector is
easily calculated from S:

pX(Wh(As)) = | det W|−1|h′
1((As)1)|−1 · · · |h′

n((As)n)|−1| det A|−1pS(s)

for s ∈ Rn. h has by assumption an invertible Jacobian at every point, so
the h′

i are either positive or negative; without loss of generality, h′
i > 0.

Furthermore, pX is independent, so we can write

pX ≡ g1 ⊗ · · · ⊗ gn.

For fixed s0 ∈ Rn with pS(s0) > 0, there exists an open neighborhood
U ⊂ Rn of s0 with pS|U > 0 and pS|U ∈ C2(U, R). If we define f (s) :=
ln
(| det W|−1| det A|−1pS(s)

)
for s ∈ U, then

f (s) = ln(h′
1((As)1) · · · h′

n((As)n)g1((Wh(As))1) · · · gn((Wh(As))n))

=
n∑

k=1

ln h′
k((As)k) + ζk((Wh(As))k)

for x ∈ Rn where ζk := ln gk locally at s0
k . pS is separated, so

∂i∂j f ≡ 0 (5.2)

for i < j. Denote A =: (aij) and W =: (wij). The first derivative and then the
nondiagonal entries in the Hessian of f can be calculated as follows (i < j):

∂i f (s) =
n∑

k=1

aki
h′′

k

h′
k
((As)k) + ζ ′

k((Wh(As))k)

(
n∑

l=1

wklalih′
l((As)l)

)
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∂i∂j f (s) =
n∑

k=1

akiakj
h′

kh′′′
k − h′′2

k

h′2
k

((As)k)

+ ζ ′′
k ((Wh(As))k)

(
n∑

l=1

wklalih′
l((As)l)

)(
n∑

l=1

wklaljh′
l((As)l)

)

+ ζ ′
k((Wh(As))k)

(
n∑

l=1

wklalialjh′′
l ((As)l)

)
.

Substituting y := As and using equation 5.2, we finally get the following
differential equation for the hk:

0 =
n∑

k=1

akiakj
h′

kh′′′
k − h′′2

k

h′2
k

(yk)

+ ζ ′′
k ((Wh(y))k)

(
n∑

l=1

wklalih′
l(yl)

)(
n∑

l=1

wklaljh′
l(yl)

)

+ ζ ′
k((Wh(y))k)

(
n∑

l=1

wklalialjh′′
l (yl)

)
(5.3)

for y ∈ V := A(U).
We will restrict ourselves to the simple case mentioned above in order to

solve this equation. We assume that the hk are analytic and that there exists
x0 ∈ Rn where the demixed densities gk are locally constant and nonzero.
Consider the above calculation around s0 = A−1(h−1(W−1x0)).

Choose the open set V such that the gk are locally constant nonzero on
h(W(V)). Then so are the ζ ′

k = ln gk, and therefore

0 =
n∑

k=1

akiakj
h′

kh′′′
k − h′′2

k

h′2
k

(yk)

for y ∈ V. Hence, there exist open intervals Ik ⊂ R and constants bk ∈ R

with

akiakj

(
h′

kh′′′
k − h′′2

k

)
≡ dkh′2

k

on Ik (here, dk = ∑
l�=k alialj

h′
lh

′′′
l −h′′2

l
h′2

l
(yl) for some (and then any) y ∈ V).

By assumption, W is mixing. Hence, for fixed k, there exist i �= j with
akiakj �= 0. If we set ck := bk

akiakj
, then

ckh′2
k − h′

kh′′′
k + h′′2

k ≡ 0 (5.4)
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on Ik. hk was chosen to be analytic, and equation 5.4 holds on the open set
Ik, so it holds on all R. Applying lemma 3 then shows that either h′

k ≡ 0 or

h′
k(x) = ± exp

( ck

2
x2 + dkx + ek

)
, x ∈ R (5.5)

with constants dk, ek ∈ R. By assumption, hk is bijective, so h′
k �≡ 0.

Applying the same arguments as above to the inverse system

S = A−1(h−1(W−1X))

and using the fact that also pS is somewhere locally constant nonzero shows
that equation 5.5 also holds for (h−1

k )′ with other constants. But if both the
derivatives of hk and h−1

k are of this exponential type, then ck = dk = 0, and
therefore hk is affine linear for all k = 1, . . . , n, which completes the proof of
postnonlinear separability in this special case.

Note that in the above proof, local positiveness of the densities was as-
sumed in order to use the equivalence of local separability with the diagonal-
ity of the logarithm of the Hessian. Hence, these results can be generalized
using theorem 1 in a similar fashion as we did in the linear case with theo-
rem 2. Hence, we have proven postnonlinear separability also for uniformly
distributed sources.

6 Conclusion

We have shown how to derive the separability of linear BSS using diagonal-
ization of the Hessian of the logarithmic density, respectively, characteristic
function. This induces separated, that is, independent, sources. The idea of
Hessian diagonalization is put into a new algorithm for performing linear
independent component analysis, which is shown to be a local problem. In
practice, however, due to the fact that the densities cannot be approximated
locally very well, we also propose a diagonalization algorithm that takes
the global structure into account. In order to show the use of this framework
of separated functions, we finish with a proof of postnonlinear separability
in a special case.

In future work, more general separability results of postnonlinear BSS
could be constructed by finding more general solutions of the differential
equation 5.3. Algorithmic improvements could be made by using other
density approximation methods like mixture of gaussian models or by ap-
proximating the Hessian itself using the cumulative density and discrete
approximations of the differential. Finally, the diagonalization algorithm
can easily be extended to nonlinear situations by finding appropriate model
parameterizations; instead of minimizing the mutual information, we mini-
mize the absolute value of the off-diagonal terms of the logarithmic Hessian.
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The algorithm has been specified using only an energy function; gradient
and fixed-point algorithms can be derived in the usual manner.

Separability in nonlinear situations has turned out to be a hard problem—
illposed in the most general case (Hyvärinen & Pajunen, 1999)—and not
many nontrivial results exist for restricted models (Hyvärinen & Pajunen,
1999; Babaie-Zadeh et al., 2002), all only two-dimensional. We believe that
this is due to the fact that the rather nontrivial proof of the Darmois-
Skitovitch theorem is not at all easily generalized to more general settings
(Kagan, 1986). By introducing separated functions, we are able to give a
much easier proof for linear separability and also provide new results in
nonlinear settings. We hope that these ideas will be used to show separabil-
ity in other situations as well.
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