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Bridge regression, a special family of penalized regressions of a penalty function∑ |βj |γ with γ ≥ 1, is considered. A general approach to solve for the bridge estimator
is developed. A new algorithm for the lasso (γ = 1) is obtained by studying the structure
of the bridge estimators. The shrinkage parameterγ and the tuning parameterλ are
selected via generalized cross-validation (GCV). Comparison between the bridge model
(γ ≥ 1) and several other shrinkage models, namely the ordinary least squares regression
(λ = 0), the lasso (γ = 1) and ridge regression (γ = 2), is made through a simulation
study. It is shown that the bridge regression performs well compared to the lasso and
ridge regression. These methods are demonstrated through an analysis of a prostate cancer
data. Some computational advantages and limitations are discussed.
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1. INTRODUCTION

Consider a linear regression problemy = Xβ+ε, wherey is ann-vector of random
responses,X an n × p design matrix,β a p-vector of parameters, andε an n-vector
of iid random errors. Ordinary least-squares regression (OLS), which minimizes RSS=
(y − Xβ)T (y − Xβ), yields an unbiased estimatorβ̂ols = (XT X)−1XT y. Despite
its simplicity and unbiasedness, the OLS estimator is, however, not always satisfactory
because it is not unique if the design matrixX is less than full rank and the variance
of the estimator var(β̂ols) = (XT X)−1σ2 is large if X is close to collinear. Therefore,
mean squared error (MSE) is inflated by the collinearity and predictions based onβ̂ols

are overall not satisfactory. Detailed discussions can be found in Seber (1977), Sen and
Srivastava (1990), Lawson and Hansen (1974), Hoerl and Kennard (1970a, 1970b) and
Frank and Friedman (1993).

To achieve better prediction, Hoerl and Kennard (1970a, 1970b) introduced ridge
regression, which minimizes RSS subject to a constraint

∑ |βj |2 ≤ t. Although ridge
regression shrinks the OLS estimator towards 0 and yields a biased estimatorβ̂rdg =
(XT X + λI)−1XT y, whereλ = λ(t), a function oft and I is an identity matrix, the
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variance is smaller than that of the OLS estimator. Therefore, better estimation can be
achieved on the average in terms of MSE with a little sacrifice of bias, and predic-
tions can be improved overall. Frank and Friedman (1993) introduced bridge regression,
which minimizes RSS subject to a constraint

∑ |βj |γ ≤ t with γ ≥ 0. It includes ridge
regression withγ = 2 and subset selection withγ = 0 as special cases. For different
values ofγ, the constrained areas are very different in the parameter space as shown in
Figure 1 fort = 1. While Frank and Friedman (1993) did not solve for the estimator of
bridge regression for any givenγ > 0, they pointed out that it is desirable to optimize
the parameterγ. Tibshirani (1996) introduced the lasso, which minimizes RSS subject
to a constraint

∑ |βj | ≤ t, as a special case of the bridge withγ = 1. As pointed out
by Tibshirani, the lasso shrinks the OLS estimatorβ̂ols towards 0 and potentially sets
β̂j = 0 for somej. Thus, it performs as a variable selection operator. To solve for the
lasso estimator, Tibshirani used a combined quadratic programming method by observ-
ing that the lasso constraint

∑ |βj | ≤ t is equivalent to combining 2p linear constraints∑
wjβj ≤ t with wj = ±1.

In this article, we study the structure of the bridge estimators and develop a general
approach to solve bridge regression forγ ≥ 1. Particularly we develop a simple algorithm
for the lasso—the shooting method. The article is organized as follows. Section 2 gives
the structure of the bridge estimators. The algorithms for the bridge and the lasso are
developed in Section 3. The variance of the bridge estimator is derived in Section 4.
The shrinkage parameterγ and the tuning parameterλ are selected for bridge regression
via the generalized cross-validation (GCV) in Section 5. A special case of orthonormal
matrix X is considered in Section 6. The bridge penalty is studied as a Bayesian prior
in Section 7. The results of a simulation study are given in Section 8, and an analysis
of a prostate cancer data is given in Section 9. Finally, some advantages of the shooting
method for the lasso and some limitations of the model selection procedure via the GCV
method are discussed. The mathematical proofs are given in the Appendix.

2. THE STRUCTURE OF THE BRIDGE ESTIMATORS

To solve bridge regression for any givenγ ≥ 1, we consider the following two
problems.

Given γ ≥ 1 and t ≥ 0, min
β

RSS subject to
∑
|βj |γ ≤ t. (P1)

Given γ ≥ 1 and λ ≥ 0, min
β

(
RSS+ λ

∑
|βj |γ

)
. (P2)

Problems (P1) and (P2) are equivalent; that is, for given 0≤ λ ≤ +∞ there exists
a t ≥ 0, such that the two problems share the same solution, and vice versa. Problem
(P1) is referred to as a constrained regression, while (P2) a penalized regression.

Consider problem (P2). LetG(β, X,y, λ, γ) = RSS+λ
∑ |βj |γ . G is convex inβ,

andG→ +∞ as ||β|| → +∞. Thus, functionG can be minimized; that is, there exists
a β̂ such thatβ̂ = arg minβ G(β, X,y, λ, γ). Take partial derivative ofG with respect
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Figure 1. Constrained Areas of Bridge Regressions with t= 1.

to βj at βj 6= 0, j = 1, . . . , p. DenoteSj(β, X,y) = ∂RSS/∂βj and d(βj , λ, γ) =
λγ|βj |γ−1sign(βj). Setting∂G/∂βj = 0 leads to


S1(β, X,y) + d(β1, λ, γ) = 0

. . .

Sp(β, X,y) + d(βp, λ, γ) = 0.

(P3)

Problem (P2) can then be solved through (P3). In fact, we have the following theorems
on (P3) for more general functionSj .

Let β be a vector in ap-dimensional parameter spaceB, X an n × p matrix, and
y a vector in ann-dimensional sample spaceR n. For fixedX, y, λ ≥ 0, γ ≥ 1, define
real functionsSj(·, X,y): B −→ R,β 7−→ Sj(β, X,y), j = 1, . . . , p, and function
d(βj , λ, γ) = λγ|βj |γ−1sign(βj). DenoteS = (S1, . . . , Sp)T . We have the results for
problem (P3).

Theorem 1. Givenγ > 1, λ > 0. If function S is continuously differentiable with
respect toβ and the Jacobian(∂S/∂β) is positive-semi-definite, then

1. (P3) has a unique solution̂β(λ, γ), which is continuous in(λ, γ); and
2. the limit of the unique solution̂β(λ, γ) exists asγ → 1+. Denote the limit solution

by β̂(λ, 1+), then limγ→1+ β̂(λ, γ) = β̂(λ, 1+).

Theorem 2. Given γ > 1, λ > 0. If functions Sj ’s are −2 multiples of the
score functions of a joint likelihood function for Gaussian distribution, and the Jacobian
(∂S/∂β) is positive definite, then
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1. The unique solution of (P3) is equal to the unique estimator of the penalized
regression (P2); and

2. the limit of the unique solution of (P3)limγ→1+ β̂(λ, γ) is equal to the lasso
estimator of (P2).

The proofs are given in the appendix.

Remark 1. Theorem 1 is independent of joint likelihood functions. Theorem 2 also
holds for other distributions of the exponential family. Accordingly, problem (P2) must be
modified by replacing RSS with the model deviance Dev(β, X,y).

To solve bridge regression for any givenγ ≥ 1 and λ > 0, we start with prob-
lem (P3). Although we only demonstrate our method below for Gaussian distribution,
our algorithms apply to other distributions in the exponential family via the iteratively
reweighted least-squares (IRLS) procedure.

Denoteβ by (βj ,β
−j)T , whereβ−j is a (p− 1) vector consisting of theβi’s other

thanβj . We study thejth equation of (P3):

Sj(βj ,β
−j , X,y) = −d(βj , λ, γ). (2.1)

The left hand side function of (2.1), LHS= 2xj
T xjβj +

∑
i6=j 2xj

T xiβi− 2xj
T y, is,

for fixed β−j , a linear function ofβj with positive slope 2xj
T xj . The right hand side

function of (2.1), RHS= −λγ|βj |γ−1sign(βj), is nonlinear inβj . RHS is of different
shape for different value ofγ as shown in Figure 2. It is continuous, differentiable, and
monotonically decreasing forγ > 1 except nondifferentiable atβj = 0 for 1 < γ < 2, a
heavy-side function with a jump of height 2λ at βj = 0 for γ = 1. Therefore, equation
(2.1) has a unique solution forγ > 1, a unique solution or no solution forγ = 1.

3. ALGORITHMS FOR THE BRIDGE
AND THE LASSO ESTIMATORS

To compute the bridge estimator forγ > 1, the Newton–Raphson method may apply.
However, because functiond is not differentiable atβj = 0 for γ < 2, modification is
needed to achieve the convergence to the solution. We develop the following modified
Newton–Raphson method forγ > 1 in general by solving iteratively for the unique
solution of thejth equation of (P3).

Modified Newton–Raphson (M-N-R) Algorithm for the Bridge γ > 

(i) Start with β̂0 = β̂ols = (β̂1, . . . , β̂p)T .

(ii) At step m, for eachj = 1, . . . , p, let S0 = Sj(0, β̂
−j

, X,y). Set β̂j = 0 if
S0 = 0. Otherwise, ifγ ≥ 2, apply the Newton–Raphson method to solve for the
unique solutionβ̂j of equation (2.1); ifγ < 2, modify function−d by changing
one part to its tangent line at some point between the solution and the origin as
shown in Figure 3 (upper left figure). Then apply the Newton–Raphson method
to equation (2.1) with the modified function−d to solve for the unique solution
β̂j . Form a new estimatorβ̂m = (β̂1, . . . , β̂p)T after updating allβ̂j .

(iii) Repeat (ii) until β̂m converges.
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Figure 2. The Functions in Equation (2.1). Solid is function−d, dashed isSj .

To compute the lasso estimator for any givenλ > 0, one can apply the result of
Theorem 1; that is, the limit of the bridge estimator, limγ→1+ β̂(λ, γ), is equal to the
lasso estimator. However, taking the limit numerically is not recommended in practice
for the following reasons. From the computational point of view, it is obviously time-
consuming because the modified Newton–Raphson algorithm has to be run for eachγ(i)

in a series of{γ(i)} with γ(i) → 1+. From the theoretical point of view, it is misleading.
Assume a sequence of{γ(i)} tends to 1+, and the corresponding estimators have one
coordinate{β̂(i)} with the values.1, . . . , 10−6, . . . Numerically one cannot determine
whether the limit ofβ̂(i) is equal to 0. However, taking the limit theoretically leads to a
new algorithm for the lasso, which is simple, straightforward, and fast as shown in the
following.

We introduce a new algorithm for the lasso—the shooting method.
1. p = 1. Start with an initial estimator̂β0, the OLS estimator. From the point

(β̂0, 0), shoot in the direction of slope 2xT x as shown in Figure 3. If a point
on the ceiling is hit (upper right figure), or a point on the floor is hit (lower
right figure), equation (P3) has a unique solutionβ̂, which has a simple close
form and is equal to the lasso estimator. If no point is hit—that is, shooting
through the window (lower left figure)—then equation (P3) has no solution. One
can take the limit of the bridge estimator theoretically. It is easy to prove that
limγ→1+ β̂(λ, γ) = 0. Therefore, set̂β = 0 for the lasso estimator.
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Figure 3. The Algorithms. Solid is function−d, dashed isSj . Upper left: the dotted line represents the mod-
ification of −d to its tangent; Upper right:S0 > λ, the dotted line indicates the solution of (2.1); Lower left:
|S0| ≤ λ; Lower right: S0 < −λ, the dotted line indicates the solution of (2.1).

2. p > 1. Start with an initial valuêβ0. At stepm, computeβ̂m by updatingβ̂j for

fixed β̂
−j

using Step 1,j = 1, . . . , p. Iterate untilβ̂m converges. We summarize
the method as follows.

Shooting Algorithm for the Lasso

(i) Start with β̂0 = β̂ols = (β̂1, . . . , β̂p)T .

(ii) At step m, for eachj = 1, . . . , p, let S0 = Sj(0, β̂
−j

, X,y) and set

β̂j =




λ−S0
2xjT xj

if S0 > λ
−λ−S0

2xjT xj
if S0 < −λ

0 if |S0| ≤ λ,

wherexj is thejth column vector ofX. Form a new estimator̂βm = (β̂1, . . . , β̂p)T

after updating allβ̂j .

(iii) Repeat (ii) until β̂m converges.

Theorem 3. (Convergence of the algorithms).
Given fixedλ > 0 and γ ≥ 1. β̂m in the modified Newton–Raphson algorithm
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converges to the bridge estimator of (P2).β̂m in the shooting algorithm converges to the
lasso estimator of (P2).

Our experience tells us that both the M-N-R and the shooting algorithms converge
very fast, as it can be perceived through the mechanism of the convergence in the
mathematical proof.

4. THE VARIANCE OF THE BRIDGE ESTIMATOR

Because the bridge estimator (γ > 1) is the unique solution of problem (P3) and is
almost surely nonzero, its variance can be derived as follows from (P3) using the delta
method.

var(β̂) =
(
XT X + D(β̂)

∣∣
y

)−1
XT var(y)X

(
XT X + D(β̂)

∣∣
y

)−1
, (4.1)

where D(β̂) = diag
(
λγ(γ − 1)|β̂j |γ−2/2

)
and y is an arbitrary fixed point in the

sample space. The variance estimate can be obtained by plugging inβ̂ for β̂|y and
replacing var(y) with its estimate.

DenoteF = (F1, . . . , Fp)T , whereFj = Sj(β̂, X,y) + d(β̂j , λ, γ). For Gaussian
distribution, ∂F /∂y = −2XT and ∂F /∂β̂ = 2XT X + 2D(β̂). Applying implicit
function theorem toF = , one has

∂β̂

∂y
= −

(
∂F

∂β̂

)−1
∂F

∂y
.

Applying the delta method to the estimateβ̂ as a function ofy leads to the variance of
β̂ in (4.1).

We examine this variance formula (4.1) in the following two special cases.
1. The OLS regression case—that is,λ = 0. The functionD(β̂) becomes a zero

matrix. Therefore var(β̂) =
(
XT X

)−1
XT var(y)X

(
XT X

)−1
, which equals to

var(β̂ols), the variance of the OLS estimator.
2. The ridge regression case—that is,γ = 2. The functionD(β̂) = λI, whereI is an

identity matrix. var(β̂) =
(
XT X + λI

)−1
XT var(y)X

(
XT X + λI

)−1
, which

equals to var(β̂rdg), the variance of the ridge estimator.

Since the lasso sets someβ̂j = 0, the delta method does not apply. However, the
bootstrap or the jackknife method can be used to compute the variance. A good variance
estimator of the nonzerôβj of the lasso estimator can be found in Tibshirani (1996).

5. SELECTION OF THE SHRINKAGE PARAMETER γ
AND THE TUNING PARAMETER λ

To select the parametersλ andγ, we use the generalized cross-validation (GCV) method
(Craven and Wahba 1979), as suggested by Tibshirani (1996) for the lasso model as
follows.
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For given λ ≥ 0 and γ ≥ 1, compute the estimatêβ. The effective number of
parameters of the model can then be computed as

p(λ) = trace
(
X(XT X + λW−)−1XT

)− n0,

whereW− is the generalized inverse ofW = diag(2|β̂j |2−γ/γ), andn0 is the number
of β̂j such thatβ̂j = 0 for γ = 1, compensating the loss of inverse of entry zero on the
diagonal ofW due toβ̂j = 0. This can be derived from (P3) as(

XT X +
λγ

2
diag(|βj |γ−2)

)
β = XT y.

Then define

GCV =
RSS

n(1− p(λ)/n)2
(5.1)

and select the values ofλ andγ that minimize GCV over a grid of(λ, γ) as shown in
Figure 9.

Remarks
1. For non-Gaussian distributions, deviance must be used to replace RSS in the GCV

of (5.1).
2. The effective number of parameters defined here has an extra compensation term

n0 for the lasso (γ = 1) compared to the one in Tibshirani (1996). It also gener-
alizes to accommodate for bridge regression with anyγ > 1.

6. BRIDGE REGRESSIONS OF ORTHONORMAL MATRIX X

In this section, we study bridge regression of orthonormal regression matrix, a special
case which allows us to study the characteristics of the shrinkage effect for different value
of γ.

For orthonormal matrixX =
(
xij

)
,
∑

i xijxil = 1 if j = l, or 0 otherwise. Problem
(P3) simplifies top independent equations:

2βj − 2
∑

i

xijyi + λγ|βj |γ−1sign(βj) = 0, j = 1, . . . , p. (6.1)

The estimator is then computed via the modified Newton–Raphson method forγ > 1 or
via the shooting method forγ = 1. To study the shrinkage effect of different value ofγ,
we compare the bridge estimator—the solution of each single equation of (6.1), with the
OLS estimator. Without making any confusion, we omit the subscriptj of βj and xij

for simplicity.
Notice that equation (6.1) can be written asβ =

∑
i xiyi − λγ|β|γ−1sign(β)/2.

The first term on the right hand side is equal to the OLS estimator, the second term
is due to the shrinkage and thus reflects the shrinkage effect. Therefore,β̂brg = β̂ols−
λγ|β̂brg|γ−1sign(β̂brg)/2.

To show the shrinkage effect of bridge regression, we plot the absolute value of the
bridge estimatorβ̂brg, and compare it with the OLS estimator, whose absolute value is
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Figure 4. Shrinkage Effect of Bridge Regressions for Fixedλ > 0. Solid—the bridge estimator; dashed—the
OLS estimator.

plotted on the diagonal as shown in Figure 4. It is shown that the lasso (γ = 1) shrinks
small OLS estimates to zero and large by a constant; ridge regression (γ = 2) shrinks the
OLS estimates proportionally; bridge regression (1< γ < 2) shrinks small OLS estimates
by a large rate and large by a small rate; bridge regression (γ > 2) shrinks small OLS
estimates by a small rate and large by a large rate. In summary, bridge regression of
large value ofγ (γ ≥ 2) tends to retain small parameters while small value ofγ (γ < 2)
tends to shrink small parameters to zero.

Therefore, it can be implied that if the true model includes many small but nonzero
regression parameters, The lasso will perform poorly but the bridge of largeγ value will
perform well. If the true model includes many zero parameters, the lasso will perform well
but the bridge of largeγ value will perform poorly. Tibshirani (1996) obtained similar
results by comparing the lasso with the ridge through intensive simulation studies.

7. BRIDGE PENALTY AS BAYESIAN PRIOR

In this section, we study the bridge penalty function
∑ |βj |γ as a Bayesian prior

distribution of the parameterβ = (β1, . . . , βp)T . From the Bayesian point of view, bridge
regression, minβ

(
RSS+ λ

∑ |βj |γ
)
, can be regarded as maximizing the log posterior
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Figure 5. Bridge Penalty as a Bayesian Prior Withλ =1.

distribution of

(
β|Y ) ∼ Cexp

{
−1

2

(
RSS+ λ

∑
|βj |γ

)}
,

whereC is a constant. Thus, the bridge penaltyλ
∑ |βj |γ can be regarded as the loga-

rithm of the prior distribution exp
{− 1

2λ
∑ |βj |γ

}
of the parameterβ = (β1, . . . , βp)T

subject to a constant. Because the log prior is a summation, the parametersβ1, . . . , βp

are mutually independent and identically distributed. We thus omit the subscriptj and
study the prior distribution ofβ.

By simple algebra, the density function of the prior distribution ofβ is

πλ,γ(β) =
γ 2−(1+1/γ)λ1/γ

Γ(1/γ)
exp

(
−1

2

∣∣∣∣ β

λ−1/γ

∣∣∣∣γ
)

,

whereλ−1/γ controls the window size of the density. Particularly, whenγ = 2, β has a
Gaussian distribution. Therefore, the posterior distribution of(β|Y ) is also Gaussian if
Y has a Gaussian distribution. This is a very special property of the ridge estimator for
linear regressions.

To compare the penalty functions of different values ofλ andγ, we plot the density
function πλ,γ(β) in Figure 5 forλ = 1 and in Figure 6 forλ = 10. Forλ = 1, it can
be observed that small values ofγ put much mass on the tails and the density has a
large window and tends to be flat, while large values ofγ put much mass in the center
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Figure 6. Bridge Penalty as a Bayesian Prior withλ =10.

aroundβ = 0 and the density has a small window and is less spread out. Forλ = 10, it
can be observed that small values ofγ put much mass close to 0 and the density has a
very short tail, while large values ofγ put mass relatively evenly in the window and the
density tends to be uniform in the interval of[−1, 1]. Whenγ = 2, the densityπλ,γ(β)
is a Gaussian density.

It can thus be implied that the bridge penalty of smallγ value favors models with
regression parameters either of many zeros or of large absolute values from a long
tailed density, while the bridge penalty of largeγ value favors models with regression
parameters of small but nonzero values from a normal-like or short tailed uniform-like
density. Similar conclusion is reached by a simulation study in next section.

8. SIMULATION STUDY

We compare the bridge model with the OLS, the lasso and the ridge in a simulation
of a linear regression model of 30 observations and 10 regressors

Y = β0 + β1x1 + · · ·+ β10x10 + ε,

whereε ∼ N(0, σ2). Ten regression matricesXm, m = 1, . . . , 10, are generated from
an orthonormal matrixX of dimension 30× 10 with different between-column pairwise
correlation coefficients{ρ}m generated from uniform distributionU(−1, 1).
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{ρ}m ∼ U(−1, 1) πλγ(β)
↓ ↓

X −→ Xm −→ Xmβk ←− βk

↓
v̂ar(Xmβk): sample variance
↓

N(0, σ2I) ←− computeσ2 with v̂ar(Xmβk)/σ2 = 6
↓

Repeat
50 times




ε

↓
Y = Xmβk + ε

↓
β̂ of OLS, bridge, lasso and Ridge models
↓

MSE and PSE for OLS, bridge, lasso and bridge models
↓

averaged MSE and PSE for OLS, bridge, lasso and bridge models

Figure 7. Schematic Diagram of the Data Generation for Fixedλ =1, γ ≥1, m= 1, . . ., 10 and k=1, . . ., 30.

The Data

For eachXm, 30 trueβk, k = 1, . . . , 30, are generated from the bridge priorπλ γ(β)
with λ = 1 and fixedγ ≥ 1. With eachXm andβk, 30 observations are generated from
Y = Xmβk +ε with iid normal random errorεi from N(0, σ2) with a signal noise ratio
v̂ar(Xmβk)/σ2 = 6, where ˆvar is the sample variance of the vector. The MSE and PSE
are computed as

MSE = (β̂ − β)T XT
mXm(β̂ − β) and PSE= (y −Xmβ̂)T (y −Xmβ̂)

for different penalty models: the OLS, the bridge, the lasso, and the ridge. The PSE is
computed as an average at 20 randomly selected points in the covariate space having
the same correlation structure asXm. Then the MSE and PSE are averaged over 50
replicates of the model with different random errorε. Hence, for eachβ generated from
the prior distributionπλ,γ(β), MSE and PSE are computed for the OLS, the bridge, the
lasso, and the ridge models, as shown in the schematic diagram in Figure 7. Therefore
10× 30 = 300 sets of MSE and PSE are computed for differentXmβk. The above
procedure is repeated for different values ofγ = 1, 1.5, 2, 3, 4.

The Method

Because each of the 300 sets of MSE and PSE is computed from differentXmβk

value, the varianceσ2 varies. The relationship PSE= MSE+ σ2 only holds within each
set, but does not for the average over all sets. Hence we choose to compare the means
of both MSE and PSE among different models. Because each set of MSE and PSE of
different penalties are computed with the sameXmβk, and their values vary in a large
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Table 1. Means∗ and SE’s of MSEr and PSEr for different γ

Bridge Lasso Ridge

γ MSEr PSEr MSEr PSEr MSEr PSEr

1 .0860(.0044) .0021(.0002) .0841(.0043) .0020(.0004) .0595(.0030) .0013(.0002)
1.5 .0225(.0054) .0009(.0003) .0224(.0054) .0009(.0003) .0566(.0032) .0017(.0002)
2 –.0176(.0053) .0002(.0005) –.0176(.0053) .0002(.0005) .0519(.0028) .0021(.0003)
3 –.0349(.0048) –.0005(.0003) –.0350(.0048) –.0005(.0003) .0566(.0029) .0016(.0002)
4 –.0377(.0048) -.0001(.0003) –.0377(.0048) –.0001(.0003) .0577(.0027) .0018(.0002)

* Minus sign means negative reduction; that is, increase of MSE or PSE.

range with differentXmβk value, but the differences between the models are relatively
small as shown in Figure 8, we compare the relative reduction of MSE and PSE from
the OLS:

MSEr =
MSEols−MSE

MSEols
and PSEr =

PSEols− PSE
PSEols

.

It can be seen clearly from the plots of the MSE and PSE in the original scale that
the MSE’s of different penalty models are highly correlated, and so are the PSE’s. It is
appropriate to compare the relative reduction of MSE and PSE rather than the original
MSE and PSE.

The Results

For each fixedγ value, the mean and its standard error of the 300 sets of MSEr and
PSEr are computed and reported in Table 1. It is shown that forγ = 1 andγ = 1.5, the
bridge, the lasso, and the ridge have significant reduction of MSE and PSE from the OLS.
For γ = 1, the bridge has the greatest reduction, followed closely by the lasso, and by the
ridge. Forγ = 1.5, The ridge has the greatest reduction of MSE and PSE, followed by
the bridge and by the lasso. Forγ = 2, 3, and 4, the ridge has a significant reduction of
MSE and PSE from the OLS, while the bridge and the lasso have a significant increase
of MSE, and no significant reduction or increase of PSE.

It is demonstrated in Table 1 that the bridge has similar results to the lasso and
performs well for smallγ values, but not as well for largeγ values. The ridge performs
well for all of the γ values considered here. It performs better than the bridge and the
lasso for largeγ values but not as well for smallγ values. As discussed in Section 7,
large value ofγ generates small but nonzero regression parameters from a short-tailed
distribution, and small value ofγ generates zeros or parameters of large absolute values
from a long-tailed distribution. It can be implied that the bridge and the lasso may perform
well if the true model has parameters of zeros or large absolute values from a long-tailed
distribution, but perform poorly if the true model has many small but nonzero parameters
from a short-tailed distribution. Such a result agrees with the results obtained in Sections
6 and 7. It also agrees with the results obtained by Tibshirani (1996) through intensive
simulations.

In Figure 8, it shows on the right hand side the box plots of the MSEr and PSEr,
and on the left hand side the plots of ten randomly selected sets of MSE and PSE in
the original scale including the maximum and minimum. It is shown that the MSE’s of
different penalty models are highly correlated, and so are the PSE’s. The values of the
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Figure 8. Comparison of MSE and PSE of Different Penalty Models by Simulation. MSE and PSE of different
penalty models with trueβ generated from the bridge prior withγ = 1. Left: ten randomly selected sets of MSE
and PSE including the maximum and minimum; Right: box plots of relative reductions from OLS: MSEr and
PSEr .

MSE’s and the PSE’s vary in a large range. It can be inferred that the comparison of MSEr

and PSEr between different penalty models is appropriate rather than the comparison of
the original MSE and PSE.

Overall, bridge regression achieves small MSE and PSE, and performs well compared
to the lasso and the ridge for linear regression models in general, but may perform poorly
if the true models have many small but nonzero parameters.

9. ANALYSIS OF PROSTATE CANCER DATA

We apply the bridge penalty to a linear regression model to analyze a prostate cancer
data. The data comes from a study by Stamey et al. (1989) that examined the correlation
between the level of prostate specific antigen and a number of clinical measures in
men who were about to receive a radical prostatectomy. The study had a total of 97
observations of male patients aged from 41 to 79 years. The covariates are log cancer
volume (lcavol), log prostate weight (lweight), age of patient, log of benign prostatic
hyperplasia amount (lbph), presence or absence of seminal vesicle invasion (svi), log of
capsular penetration (lcp), Gleason grade (gleason), and percent Gleason grade 4 or 5
(pgg45). The data was later studied in Tibshirani (1996). A more detailed description of
the data set can be found in either article.

We fit a linear model to the data. First, the data is centered byx j = (x j − x̄ j)/‖x j−
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Table 2. Correlation Matrix of the Covariates of the Prostate Cancer Data


lcavol 1.000 .194 .225 .027 .539 .675 .432 .434
lweight .194 1.000 .308 .435 .109 .100 –.001 .051
age .225 .308 1.000 .350 .118 .128 .269 .276
lbph .027 .435 .350 1.000 –.086 -.007 .078 .078
svi .539 .109 .118 –.086 1.000 .673 .320 .458
lcp .675 .100 .128 –.007 .673 1.000 .515 .632
gleason .432 –.001 .269 .078 .320 .515 1.000 .752
pgg45 .434 .051 .276 .078 .458 .632 .752 1.000




x̄ j‖, wherex j is the jth column vector of the regression matrixX, and ‖ · ‖ is the
Euclidean norm. Then a linear model is fitted to the centered data. Certain correlation
is present between the covariates. For example, the pairwise coefficient is .752 between
gleason and pgg45, .673 between svi and lcp, and .675 between lcavol and lcp, and so
on. The condition number is 16.9, which indicates a slight collinearity in the covariates.
All parameters of the OLS model are nonzero though some of them are not significant,
for example, lcp, gleason, and pgg45. A bridge penalty model is also fitted and compared
with the OLS estimator as in Table 3. For each pair of fixedλ ≥ 0 andγ ≥ 1, the bridge
estimator is computed by either the M-N-R or the shooting algorithm. Then the GCV is
computed as in (5.1). The penalty parameters are selected for this data set via the GCV
as shown in Figure 9. A lasso model withλ = 7.2 is selected. The standard errors for
the bridge estimates were computed by 10,000 bootstrap samples (Efron and Tibshirani
1993). Although the OLS model yields a significant effect of the intercept, lcavol, lweight,
svi, and a marginal significant effect of age and lbph, the bridge model yields a significant
effect of the intercept, lcavol, lweight, svi, and a marginal significant effect of lbph.
The effect of age becomes nonsignificant in the bridge model. Two covariates—lcp and
gleason—vanish in the bridge model.

We further compare the bridge model with the best model obtained from the subset
selection by the leaps and bounds (L–B) method (Furnival and Wilson 1974; Seber 1977).
The subset selection chooses the best model with the covariates lcavol, lweight, lbph,
and svi. The covariates age and pgg45 are in the bridge model but not in the subset
selection model. However, these two covariates are not significant at all based on their
standard errors. Therefore, the bridge model agrees with the best model from the subset
selection by the leaps and bounds method as shown in Table 4.

10. DISCUSSION

Bridge regression, as a special family of penalized regressions with two very im-
portant members—ridge regression and the lasso—plays an important role in solving
collinearity problem. It yields small variance of the estimator and achieves good estima-
tion and prediction by shrinking the estimator towards 0.

The simple and special structure of the bridge estimators forγ ≥ 1 makes the com-
putation very simple. The modified Newton–Raphson method forγ > 1 and the shooting
method forγ = 1 were developed based on the theoretical results of the structure of
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Figure 9. Selection of Parametersλ andγ for the Prostate Cancer Data.

the bridge estimators. Particularly, the shooting method for the lasso benefits from the
theoretical result that the lasso estimator is the limit of the bridge estimator asγ tends to
1 from above. It has a very simple close form at each single step, and a simple iteration
leads to fast convergence. These properties make it very attractive computationally in
terms of CPU and memory. In contrast, the combined quadratic programming method by
Tibshirani (1996) has a finite-step (2p) convergence, and potentially has even better con-
vergence rate (.5p to .75p) as pointed out by Tibshirani (1996). In addition, the combined
quadratic programming method has a standardized shrinkage rates =

∑
j |β̂j lasso|/|β̂j ols|

as a tuning parameter, which has a range of[0, 1] and is easy to optimize via grid search;
while the shooting method has no such a standardized range, even though it has a thresh-

Table 3. The Estimates of the Prostate Cancer Data

OLS Bridge

intercept 2.478(.072) 2.478(.072)
lcavol .688(.103) .618(.090)
lweight .225(.084) .190(.076)
age –.145(.082) –.048(.046)
lbph .155(.084) .103(.066)
svi .316(.100) .245(.087)
lcp –.147(.126) .000(.068)
gleason .032(.112) .000(.047)
pgg45 .127(.123) .063(.056)



PENALIZED REGRESSIONS 413

Table 4. Comparison in Model Selection∗

OLS Bridge Subset(L–B)

lcavol Y Y Y
lweight Y Y Y
age Y N N
lbph Y Y Y
svi Y Y Y
lcp N N N
gleason N N N
pgg45 N N N
∗ Y—significant effect; N— insignificant
effect.

old λ0 > 0 such that any tuning parameterλ ≥ λ0 sets the lasso estimateŝβj = 0
for j = 1, . . . , p (Gill, Murray, and Wright 1981). We believe that the shooting method
has a convergence rate of orderp log(p) although a theoretical result of the order has
not been obtained. It is easy to see that for orthogonalX, only p steps is required to
solve thep independent equations in (P3) by the shooting method. Both the modified
Newton–Raphson method and the shooting method can be applied to generalized linear
models via the IRLS procedure without extra effort.

The generalized cross-validation (GCV) method was proposed initially to optimize
the tuning parameter of smoothing splines, which are linear operators. This technique is
borrowed here to select the shrinkage parametersλ and γ, as suggested by Tibshirani
(1996) for the lasso. It is evidently true in the literature that the GCV method works
well for linear operators, including ridge regression. The simulation results of the linear
regression model in Section 8 demonstrate that the GCV does not always select the best
value ofγ for bridge regression, even though bridge regression has the potential to select
the best value ofγ from a wide range[1,∞). The following fact may partially but not
completely explain why the GCV does not select the bestγ.

The bridge operator is nonlinear forγ 6= 2. This can be seen clearly from the equation
in Section 5 due to the term diag(|βj |γ−2). The nonlinearity of the bridge operator can
be visually seen in Figure 4 for the special case of orthonormal matrix. Since the bridge
operator (γ 6= 2) performs very differently from the ridge operator (γ = 2) or the OLS
operator (λ = 0), the linear approximation to the bridge operator as in the GCV definition
(5.1) does not yield the bestγ value for the model selection.

Because of the nonlinearity, it is not a surprise that the bridge model does not always
perform the best in estimation and prediction compared to the other shrinkage models—
the lasso and the ridge. Therefore, it is of great interest to investigate whether some
other model selection methods, such as Mallow’sCp, AIC, or BIC criteria, perform well
for bridge regression. If not, new optimization techniques are desirable, especially for
nonlinear operators.

APPENDIX: MATHEMATICAL PROOFS

In this appendix, we give an outline of the mathematical proofs of Theorems 1, 2,
and 3.
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DenoteF = (F1, . . . , Fp)T , whereFj = Sj(β, X,y) + d(βj , λ, γ), j = 1, . . . , p.
Equation (P3) is equivalent toF = . We give two lemmas as follows.

Lemma 1. Givenλ > 0, γ > 1. If the Jacobian
(
∂S/∂β

)
is positive-semi-definite,

then
(
∂F /∂β

)
is positive-definite atβj 6= 0, j = 1, . . . , p.

Lemma 2. Givenλ > 0. Function−d(βj , λ, γ) = −λγ|βj |γ−1sign(βj) converges
to the heavy-side function−d(βj , λ, 1) = −λsign(βj) at βj 6= 0 asγ → 1+.

The proof of Lemma 1 is straight forward by observing that(
∂F

∂β

)
=

(
∂S

∂β

)
+ 2D(β, λ, γ),

whereD(β, λ, γ) = diag
(
λγ(γ − 1)|βj |γ−2/2

)
. D is positive definite forγ > 1 and

βj 6= 0, j = 1, . . . , p. The proof of Lemma 2 is obvious by observing that functiond is
continuous inγ at βj 6= 0. Now we give a sketch of the proof of Theorem 1.

Proof of Theorem 1.
1. First, it is easy to prove the existence of the solution of (P3) and that the solution

is almost surely nonzero by mathematical induction on dimensionp. Second, the
conditions of the implicit function theorem are satisfied by Lemma 1. Therefore,
there exists a unique solution̂β(λ, γ) satisfying (P3), and̂β(λ, γ) is continuous
in (λ, γ).

2. Now we prove the existence of the limit ofβ̂(λ, γ) asγ → 1+ by mathematical
induction on dimensionp.

(a) p = 1. If there is an intersection of functionsS(β, X,y) and−d(β, λ, 1) as
shown in Figure 3 (upper right or lower right figure), by the continuity of func-
tions S(β, X,y) and−d(β, λ, γ) and Lemma 2, the limit, limγ→1+ β̂(λ, γ),
exists and is equal to the coordinate of the intersection. If there is no intersec-
tion of these two functions as shown in Figure 3 (lower left figure), it is easy
to prove that limγ→1+ β̂(λ, γ) = 0. Therefore, the result holds forp = 1.

(b) For simplicity, we omitλ from the expressions since it is kept as a constant.
Assume that the result holds for all dimensions 1, . . . , (p−1). We prove that it
also holds for dimensionp. Consider a sub-problem formed by the firstp− 1
equations of (P3) for fixedβp. By the assumption, the limit of the unique
solution (β̂1(βp, γ), . . . , β̂p−1(βp, γ)) of this sub-problem exists asγ → 1+
for any fixedβp. Plug into the last equation of (P3)

Sp

(
β̂1(βp, γ), . . . , β̂p−1(βp, γ), βp, X,y

)
+ d(βp, γ) = 0. (A.1)

We prove that (A.1) has a unique solution̂βp(γ) of which the limit exists
as γ → 1+. Denote the first term of the left hand side function of (A.1) by
L(βp, γ). It can be proved that∂L/∂βp ≥ 0 by chain rule since the partial
derivatives,∂β̂1/∂βp, . . . , ∂β̂p−1/∂βp satisfy

∂Sj

∂β̂1

∂β̂1

∂βp
+ · · ·+ ∂Sj

∂β̂p−1

∂β̂p−1

∂βp
+

∂Sj

∂βp
= 0, j = 1, . . . , p− 1 (A.2)

by the implicit function theorem on the subproblem. This implies the existence
of the unique solution̂βp(γ). Notice that∂L/∂βp ≥ 0 for anyγ > 1. Similarly,
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one can prove that the solution of the following equation exists.

Sp

(
β̂1(βp, 1+), . . . , β̂p−1(βp, 1+), βp, X,y

)
+ d(βp, γ) = 0, (A.3)

where β̂j(βp, 1+) is the limit of the solutionβ̂j(βp, γ) for fixed βp, j =
1, . . . , p − 1. Denote the solution of (A.3) bỹβp(γ). Then limγ→1+ β̃p(γ)
exists by the assumption of induction. Rewrite equation (A.1) as

Sp

(
β̂1(βp, 1+), . . . , β̂p−1(βp, 1+), βp, X,y

)
+ d(βp, γ) + ∆(βp, γ) = 0,

(A.4)
where

∆(βp, γ) = Sp

(
β̂1(βp, γ), . . . , β̂p−1(βp, γ), βp, X,y

)
−Sp

(
β̂1(βp, 1+), . . . , β̂p−1(βp, 1+), βp, X,y

)
.

To prove that the limit ofβ̂p(γ) exists, it suffices to prove that the solutions
of (A.4) and (A.3) have the same limit. This can be achieved by the following
inequality

|∆(βp, γ)| ≤ δ(γ),

whereδ(γ) is independent ofβp and converges to 0 asγ → 1+. This inequality
can be easily proved in functional analysis by observing thatSp is differen-
tiable with bounded partial derivatives∂Sp/∂β̂j , β̂j(βp, γ) is differentiable
with bounded partial derivatives∂β̂j/∂βp by Implicit Function Theorem, and
β̂j(βp, γ) → β̂j(βp, 1+) for any value ofβp. This completes the proof of
Theorem 1. 2

Proof of Theorem 2.
1. Givenλ > 0, γ > 1. Because there exists a joint likelihood function and∂S/∂β

is positive definite, the deviance function−2log(Lik) is convex inβ. By the
same argument of Lemma 1, functionG(β, λ, γ) = −2log(Lik) + λ

∑ |βj |γ is
convex and can be minimized uniquely at some finite point. Hence, the bridge
estimator is unique. Because (P3) has a unique solutionβ̂(λ, γ), which satisfies
that β̂j 6= 0 almost surely forj = 1, . . . , p, and functionG is differentiable at
β̂(λ, γ), thusG attains the minimum at̂β(λ, γ). By the uniqueness of the bridge
estimator,β̂(λ, γ) is equal to the bridge estimator of (P2).

2. Given λ > 0. By Theorem 1, limγ→1+ β̂(λ, γ) exists. Denote the limit by
β̂(λ, 1+). Then limγ→1+ G

(
β̂(λ, γ), λ, γ

)
= G

(
β̂(λ, 1+), λ, 1

)
. Notice that

β̂(λ, γ) is the unique estimator minimizingG(λ, γ), and β̂lasso is the unique
estimator minimizingG(λ, 1) since G is convex forγ = 1. It can be easily
proved thatβ̂(λ, 1+) = β̂lasso by contradiction. 2

Proof of Theorem 3.Because the limit of the bridge estimator is the lasso estimator
as γ tends to 1+, taking this limit at each step of the modified Newton-Raphson (M-
N-R) algorithm leads to the shooting algorithm. Hence the convergence of the M-N-R
algorithm implies the convergence of the shooting algorithm. Therefore it suffices to
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prove the convergence of the M-N-R algorithm. We prove it for the case in which there
exists a joint likelihood function.

Because there exists a joint likelihood function, functionG(β, λ, γ) is convex by
Lemma 1. Hence there exists a unique solution minimizingG—that is,β̂brg = arg minG.
For p = 1, the M-N-R algorithm converges to the unique solution of (P3), which is the
bridge estimator by Theorem 2. Hence,β̂brg minimizes functionG. For p > 1 and fixed

β̂
−j

, updatingβ̂j by M-N-R algorithm attains the local minimum ofG in βj for fixed

β̂
−j

. Denote the value ofG by Gmj and the updated value of̂β by β̂mj after updating
β̂j at stepm by M-N-R algorithm, one has

G11 ≥ G12 ≥ · · · ≥ Gm1 ≥ · · · ≥ Gmp ≥ · · · ≥ min(G).

By the convexity of functionG and the uniqueness of the bridge estimator, which min-
imizes G, Gmj converges to min(G), and β̂mj converges toβ̂brg, the unique bridge

estimator. Consequently, the subsequenceβ̂mp, which is the sequencêβm in the M-N-R
algorithm by definition, converges to the unique bridge estimator. 2
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