
A tutorial on the LASSO and the ”shooting algorithm”

Gautam V. Pendse∗1

1 P.A.I.N Group, Imaging and Analysis Group (IMAG), McLean Hospital, Harvard Medical School

February 8, 2011

∗To whom correspondence should be addressed. e-mail: gpendse@mclean.harvard.edu

1



1 Abstract

The LASSO is an L1 penalized regression technique introduced by Tibshirani [1996]. An efficient
algorithm called the ”shooting algorithm” was proposed by Fu [1998] for solving the LASSO problem
in the multiparameter case. In this tutorial, we present a simple and self-contained derivation of
the LASSO shooting algorithm.

2 Code distribution for LASSO shooting

MATLAB (www.mathworks.com) code for solving a LASSO problem using the ”shooting algorithm”
and estimating the regularization parameter can be downloaded from:

http://www.gautampendse.com/software/lasso/webpage/lasso_shooting.html

This software is freely made available under the creative commons attribution license:

http://creativecommons.org/licenses/by/3.0/

3 Notation

• Scalars will be denoted in a non-bold font possibly with subscripts (e.g. λ, βi). We will use
bold face lower case letters possibly with subscripts to denote vectors (e.g. y,x,β, z1) and
bold face upper case letters possibly with subscripts to denote matrices (e.g. X,B1). The
ith element of a vector x will be denoted by xi in non-bold font.

• The transpose of a matrix X will be denoted by XT and its inverse will be denoted by X−1.
We will denote the p×p identity matrix by Ip. A vector or matrix of all zeros will be denoted
by a bold face zero 0 whose size should be clear from context.

• The q-norm of a p× 1 vector β will be denoted by ||β||q =
(∑p

i=1 |βi|q
) 1

q

where |βi| denotes

the absolute value of βi.

4 Introduction

Given n feature vectors of length p arranged in the rows of a design matrix X we would like to
predict the n × 1 observed response vector y via a linear model. LASSO solves the following L1
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regularized optimization problem:

minβ h(β) = 1
2 ||y −Xβ||

2
2 + λ||β||1, where λ ≥ 0 (4.1)

where (4.2)
β is a p× 1 vector (4.3)
y is a n× 1 vector (4.4)
X is a n× p matrix (4.5)

We assume that n > p. The penalty term in 4.1 is a 1-norm penalty or simply the sum of the
absolute values of the components of β. As we shall see this penalty term encourages sparsity in the
components of the solution vector β and thus automatically leads to feature/model selection. In
addition, the penalty term regularizes the solution vector β and hence prevents overfitting.

5 Preliminaries

In this section, we give some background material that is necessary for a clear understanding of how
LASSO works. We will cover some basic relationships between convexity, positive semidefiniteness,
local and global minimizers.

Definition 5.1 (Convexity). A set D is convex if for any x1,x2 ∈ D and all α ∈ (0, 1), x =
αx1 + (1 − α)x2 ∈ D. A function f(x) is convex if (1) its domain D is convex and (2) f(x) =
f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2).

Definition 5.2 (PSD). A p× p matrix H is positive semidefinite (PSD) if for all p× 1 vectors z
we have zTHz ≥ 0.

Proposition 5.3 (PSD Hessian implies Convexity). Suppose x is a p × 1 vector and f(x) is a
scalar function of p variables with continuous second order derivatives defined on a convex domain
D. If the Hessian ∇2f(x) is positive semidefinite for all x ∈ D then f is convex.

Proof. By Taylor’s theorem for all x,x+ h ∈ D we can write:

f(x+ h) = f(x) +∇f(x)Th+
1
2
hT∇2f(x+ θh)h (5.1)

for some θ ∈ (0, 1). By assumption, the Hessian ∇2f(x + θh) is positive semidefinite and hence
hT∇2f(x+ θh)h ≥ 0. Hence for all x,x+ h ∈ D we can write:

f(x+ h) ≥ f(x) +∇f(x)Th (5.2)
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Letting x+ h = y we can also write the above equation as:

f(y) ≥ f(x) +∇f(x)T (y − x) ∀x,y ∈ D (5.3)

Now let x1 and x2 be any two points in D and let α ∈ (0, 1) be a scalar. Then by the convexity of
D, x = αx1 + (1− α)x2 ∈ D.

By 5.3 we can write:
f(x1) ≥ f(x) +∇f(x)T (x1 − x) (5.4)

and
f(x2) ≥ f(x) +∇f(x)T (x2 − x) (5.5)

Multiplying 5.4 by α and 5.5 by (1− α) and adding we get:

αf(x1) + (1− α)f(x2) ≥ f(x) +∇f(x)T (αx1 + (1− α)x2 − x)
= f(x)

(5.6)

Hence f(x) is convex.

Proposition 5.4. If f(x) and g(x) are convex functions defined on a convex domain D then
r(x) = f(x) + g(x) is also convex on D.

Proof. Suppose x1,x2 ∈ D and let x = αx1 + (1− α)x2 for some α ∈ (0, 1). Since D is convex we
have x ∈ D. Now

r(x) = r(αx1 + (1− α)x2) (5.7)
= f(αx1 + (1− α)x2) + g(αx1 + (1− α)x2) (5.8)
≤ αf(x1) + (1− α)f(x2) + αg(x1) + (1− α)g(x2) by convexity of f and g (5.9)
= αr(x1) + (1− α)r(x2) (5.10)

Hence r(x) is convex.

Proposition 5.5 (LASSO objective is convex). The LASSO objective function h(β) in equation
4.1 is convex.

Proof. We can write the LASSO objective as:

h(β) = f(β) + g(β) (5.11)

4



where f(β) = 1
2 ||y−Xβ||

2
2 and g(β) = λ||β||1. Note that the domain of both functions f and g is

Rp which is convex.

The Hessian of f(β) is ∇2f(β) = XTX. For any p× 1 vector z: zTXTXz = ||Xz||22 ≥ 0. Hence
∇2f(β) is positive semidefinite. Hence by proposition 5.3 f(β) is convex.

For any β1,β2 and any α ∈ (0, 1), let β = αβ1 + (1− α)β2. Then

g(β) = λ ||αβ1 + (1− α)β2||1 (5.12)
≤ λ ||αβ1||1 + λ ||(1− α)β2||1 Triangle inequality (5.13)
= λα ||β1||1 + λ (1− α) ||β2||1 (5.14)
= α g(β1) + (1− α) g(β2) (5.15)

Hence g(β) is convex. Since f(β) and g(β) are both convex, by proposition 5.4 h(β) = f(β)+g(β)
is also convex.

Proposition 5.6. If f(x) is a convex function defined for x ∈ D with convex D then any local
minimizer of f on D is a global minimizer of f on D.

Proof. Suppose x∗ is a local minimizer but not a global minimizer. Then there exists a global
minimizer x∗g such that:

f(x∗g) < f(x∗) (5.16)

In addition, since x∗ is a local minimizer we must have:

f(y) ≥ f(x∗) for all y ∈ nbhd(x∗) (5.17)

Here nbhd(x∗) is a local neighborhood of x∗. By the convexity of f and D, for any α ∈ (0, 1) we
can write:

f(αx∗ + (1− α)x∗g) ≤ αf(x∗) + (1− α)f(x∗g) (5.18)

< αf(x∗) + (1− α)f(x∗) using 5.16 (5.19)
= f(x∗) (5.20)

For sufficiently small α such that y = αx∗ + (1− α)x∗g ∈ nbhd(x∗) we get:

f(y) < f(x∗) with y ∈ nbhd(x∗) using 5.18 (5.21)

Comparing 5.17 and 5.21 we have a contradiction. Hence we must have f(x∗g) ≥ f(x∗). However,
since x∗g is a global minimizer we must also have f(x∗g) ≤ f(x∗). Therefore we must have f(x∗g) =
f(x∗). In other words, the local minimizer x∗ is also a global minimizer as claimed.

Remark 5.7. Note that x∗ is not necessarily equal to x∗g in proposition 5.6. It is quite possible
that x∗ 6= x∗g but at the same time the convexity of f and D will imply that f(x∗g) = f(x∗).
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6 Derivation of the LASSO ”shooting algorithm”

In this section, we present a simple derivation of the ”shooting algorithm”. First, we consider the
case of single variable optimization, i.e., when p = 1. Next, we show how this simple case can be
applied to the multi parameter situation via the ”shooting algorithm”.

6.1 Single variable case: p = 1

The optimization problem 4.1 is non-smooth because of the presence of the L1 penalty term. We
can convert this problem into a smooth one by introducing a new scalar variable t. The next
proposition establishes the link between the two optimization problems.

Proposition 6.1. Suppose β ∈ R is a scalar and x and y are n × 1 vectors. Consider the 1-D
optimization problem

minβ h(β) = 1
2 ||y − xβ||

2
2 + λ|β|, where λ ≥ 0 (6.1)

Suppose β∗1 is the solution to 6.1. Consider another 1-D optimization problem:

minβ h̄(β) = 1
2 ||y − xβ||

2
2 + λt, where λ ≥ 0 (6.2)

t− β ≥ 0 (6.3)
t+ β ≥ 0 (6.4)

Suppose (β∗, t∗) is the solution to 6.2. Then β∗ = β∗1 .

Proof. By proposition 5.5 the objective function in 6.1 is convex. Suppose (t1, β1) and (t2, β2) satisfy
the constraints in 6.2. Then t1−β1 ≥ 0 and t1+β1 ≥ 0. Also t2−β2 ≥ 0 and t2+β2 ≥ 0. Now let α ∈
(0, 1) and let t = αt1+(1−α)t2 and β = αβ1+(1−α)β2. Then t−β = α(t1−β1)+(1−α)(t2−β2) ≥ 0.
Similarly, t+ β = α(t1 + β1) + (1− α)(t2 + β2) ≥ 0. Hence (t, β) also satisfy the constraints. This
implies that the constraints define a convex set. The Hessian of the objective function in 6.2 is
H(β, t) =

(
xTx 0

0 0

)
. Clearly, this is positive semidefinite. Hence by proposition 5.3, the optimization

problem in 6.2 is convex. Hence by proposition 5.6 any local minimizer of 6.1 or 6.2 is also a global
minimizer.

Since (β∗, t∗) is the local (and hence global) solution of 6.2, for all (β, t) such that t − β ≥ 0 and
t+ β ≥ 0 we can write:

1
2 ||y − xβ

∗||22 + λt∗ ≤ 1
2 ||y − xβ||

2
2 + λt (6.5)

In particular, β = β∗1 and t = |β∗1 | satisfy the constraints in 6.2 and hence we can write:

1
2 ||y − xβ

∗||22 + λt∗ ≤ 1
2 ||y − xβ

∗
1 ||22 + λ|β∗1 | (6.6)
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Since β∗1 is a global minimizer of 6.1 we can write:

1
2 ||y − xβ

∗
1 ||22 + λ|β∗1 | ≤ 1

2 ||y − xβ
∗||22 + λ|β∗| (6.7)

Adding 6.6 and 6.7 and simplifying we get:

t∗ ≤ |β∗| (6.8)

But t∗ satisfies t∗ ≥ β∗ and t∗ ≥ −β∗ i.e., t∗ ≥ |β∗|. From 6.8 we must therefore have:

t∗ = |β∗| (6.9)

Substituting 6.9 in 6.6 we get:

1
2 ||y − xβ

∗||22 + λ|β∗| ≤ 1
2 ||y − xβ

∗
1 ||22 + λ|β∗1 | (6.10)

From 6.10 and 6.7 we must have:

1
2 ||y − xβ

∗||22 + λ|β∗| = 1
2 ||y − xβ

∗
1 ||22 + λ|β∗1 | (6.11)

Expanding we get:

1
2y

Ty + 1
2(β∗)2xTx− yTxβ∗ + λ|β∗| = 1

2y
Ty + 1

2(β∗1)2xTx− yTxβ∗1 + λ|β∗1 | (6.12)

Case 1: λ = 0: In this case, 1
2 ||y − xβ

∗
1 ||22 + λ|β∗1 | = 1

2 ||y − xβ
∗
1 ||22 which is minimized for

β∗1 = yTx/xTx. Similarly 1
2 ||y−xβ

∗||22+λt∗ = 1
2 ||y−xβ

∗||22 which is minimized for β∗ = yTx/xTx.
Hence, in this case we have β∗ = β∗1 = yTx/xTx.

Case 2: λ 6= 0 and yTx = 0: In this case, 1
2 ||y − xβ

∗
1 ||22 + λ|β∗1 | = 1

2y
Ty + 1

2(β∗1)2xTx + λ|β∗1 |
which is minimized for β∗1 = 0. Similarly, 1

2 ||y − xβ
∗||22 + λt∗ = 1

2 ||y − xβ
∗||22 + λ|β∗| = 1

2y
Ty +

1
2(β∗)2xTx+ λ|β∗| which is minimized for β∗ = 0. Hence, in this case we have β∗ = β∗1 = 0.

Case 3: λ 6= 0 and yTx 6= 0: Equation 6.12 holds for all values of λ, x and y. Equating the
terms containing λ we must have:

|β∗| = |β∗1 | (6.13)

Equation 6.13 already ensures that 1
2(β∗)2xTx = 1

2(β∗1)2xTx. Equating the coefficient of yTx on
both sides of 6.12 we get:

− yTxβ∗ = −yTxβ∗1 (6.14)
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Since yTx 6= 0, we must have β∗ = β∗1 which is consistent with 6.13.

Hence in all cases, we have β∗ = β∗1 as claimed.

Proposition 6.2. Consider another 1-D optimization problem:

minβ h̄(β) = 1
2 ||y − xβ||

2
2 + λt, where λ ≥ 0 (6.15)

t− β ≥ 0 (6.16)
t+ β ≥ 0 (6.17)

Suppose x 6= 0 and suppose (β∗, t∗) is the solution to 6.15. Then β∗ is given by:

β∗ =



(yTx−λ)
xTx

if yTx− λ > 0,

(yTx+λ)
xTx

if yTx+ λ < 0,

0 if −λ ≤ yTx ≤ λ.

(6.18)

Proof. The Lagrangian for the optimization problem 6.15 is:

L(β, t, λ1, λ2) = 1
2 ||y − xβ||

2
2 + λt− λ1(t− β)− λ2(t+ β) (6.19)

The Karush-Kuhn-Tucker (KKT) necessary conditions of optimality for (β∗, t∗) are:

∂L
∂β

= 0 =⇒ β xTx = yTx+ λ2 − λ1

∂L
∂t

= 0 =⇒ λ1 + λ2 = λ

t− β ≥ 0
t+ β ≥ 0

}
Inequality constraints

λ1 ≥ 0
λ2 ≥ 0

}
Positivity of λ1, λ2

λ1(t− β) = 0
λ2(t+ β) = 0

}
Complementarity constraints (6.20)

If yTx = 0 then as shown in proposition 6.1 Case 1 and Case 2, β∗ = 0. Thus we assume without
loss of generality that yTx 6= 0.
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Case 1: yTx − λ > 0: From 6.20 β xTx = yTx + λ2 − λ1 and λ1 + λ2 = λ. Thus β xTx =
yTx− λ+ 2λ2. Since λ2 ≥ 0 (by 6.20) and yTx− λ > 0 (by assumption in Case 1) we have that:

β xTx = (yTx− λ) + 2λ2 > 0 (6.21)

Since x 6= 0 we must have β > 0. Also, adding the inequality constraints in 6.20 we have t ≥ 0.
Hence in Case 1, we must have (t+ β) > 0. Hence the complementarity constraints in 6.20 imply
that λ2 = 0. Hence from 6.21 we have:

β =
(yTx− λ)
xTx

(6.22)

Case 2: yTx + λ < 0: From 6.20 β xTx = yTx + λ2 − λ1 and λ1 + λ2 = λ. Thus β xTx =
yTx+ λ− 2λ1. Since λ1 ≥ 0 (by 6.20) and yTx+ λ < 0 (by assumption in Case 2) we have that:

β xTx = (yTx+ λ)− 2λ1 < 0 (6.23)

Since x 6= 0 we must have β < 0. Since t ≥ |β| ≥ 0, in Case 2, we must have (t − β) > 0. Hence
the complementarity constraints in 6.20 imply that λ1 = 0. Hence from 6.23 we have that:

β =
(yTx+ λ)
xTx

(6.24)

Case 3: −λ ≤ yTx ≤ λ: If β > 0 then (t+β) > 0 which implies λ2 = 0 (complementarity) and as
in 6.22 β = (yTx−λ)

xTx
. However yTx− λ ≤ 0 in Case 3 which means β ≤ 0 which is a contradiction.

Similarly, if β < 0 then (t − β) > 0 which implies λ1 = 0 (complementarity) and as in 6.24
β = (yTx+λ)

xTx
. By assumption in Case 3 yTx+ λ ≥ 0 which means β ≥ 0 which is a contradiction.

The only way to avoid contradiction is to choose β = 0 which leads to the following valid selection
of lagrange multipliers:

λ1 =
λ+ yTx

2
≥ 0 (6.25)

λ2 =
λ− yTx

2
≥ 0 (6.26)

It can be checked that β = 0, t = 0 and λ1, λ2 as given in 6.25 satisfy the all the KKT conditions
of optimality in 6.20. Hence in all cases, β∗ is given by 6.18 as claimed.
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6.2 Multiple variable case: p > 1

In this section we describe the co-ordinate wise optimization approach of Fu [1998] which is also
known as the ”shooting algorithm” and show that it converges to the global minimum of the LASSO
objective function.

The LASSO objective function is a sum of two convex functions one of which is non-differentiable.
However, the non-differentiable part is separable in the individual co-ordinate wise components.
As shown in Tseng [1988], for optimization problems with this structure, the co-ordinate wise op-
timization approach to converges to a global minimum. This same property also holds in the case
of blockwise co-ordinate optimization as shown in Tseng [2001]. As discussed in Friedman et al.
[2007], a similar co-ordinate wise approach can also be applied to other methods related to LASSO
such as the ”elastic net”.

Proposition 6.3. Consider the LASSO optimization problem:

minβ h(β) = 1
2 ||y −Xβ||

2
2 + λ||β||1, where λ ≥ 0 (6.27)

Let X = [x1,x2, . . . ,xp], β = [β1, β2, . . . , βp]T , X(−i) = [x1, . . . ,xi−1,xi+1, . . . ,xp] and β(−i) =
[β1, . . . , βi−1, βi+1, . . . , βp]T . Consider the following solution approach:

• Initialize β = β0 (using for instance least squares, regularized least squares or randomly)

• For k = 0, 1, 2, . . . ,m repeat

– Compute fk = h(β).

– For i = 1, 2, . . . , p

1. Using the current value of β(−i) solve the following 1-D optimization problem w.r.t.
βi

minβi
h
′
(βi) = 1

2 ||yi − xiβi||
2
2 + λ|βi|+ λ||β(−i)||1 (6.28)

where
yi = y −X(−i)β(−i) (6.29)

2. Suppose β∗i is the solution to 6.28 then update the ith element of β to be equal to β∗i
i.e., set βi = β∗i

Then the sequence of iterates f1, f2, . . . , fm converge to the co-ordinate wise minimum of h(β) in
6.27 as m→∞.

Proof. It is easy to see that:

h(β) = 1
2 ||y −Xβ||

2
2 + λ||β||1 = 1

2 ||yi − xiβi||
2
2 + λ|βi|+ λ||β(−i)||1 (6.30)
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where yi is defined in 6.29. If β∗i solves the convex optimization problem 6.28 then we must have:

1
2 ||yi − xiβ

∗
i ||22 + λ|β∗i |+ λ||β(−i)||1 ≤ 1

2 ||yi − xiβi||
2
2 + λ|βi|+ λ||β(−i)||1 = h(β) (6.31)

If βnew is the new vector obtained by updating the ith component of β to be equal to β∗i then we
can re-write 6.31 as:

h(βnew) ≤ h(β) (6.32)

Hence we see that every iteration in the inner for loop (i = 1, 2, . . . , p) decreases the objective
function. This implies that:

fk+1 ≤ fk for all k (6.33)

Suppose f̂ is the greatest lower bound on the sequence {fk}. Then f̂ ≤ fk for all k. Choose any
ε > 0. Then

fk + ε > f̂ (6.34)

Also f̂ + ε is not the greatest lower bound. Hence there exists n0 such that

fn0 < f̂ + ε (6.35)

Since k > n0 implies fk ≤ fn0 we conclude that:

fk ≤ fn0 < f̂ + ε if k > n0 (6.36)

Hence for all k > n0 we have:
f̂ − ε < fk < f̂ + ε (6.37)

In other words, the sequence {fk} converges to f̂ . If we cycle through all the co-ordinate directions
until convergence then f̂ will be the co-ordinate wise minimum of h(β).

Proposition 6.4. Suppose β̂ is the co-ordinate wise minimum of h(β):

h(β̂ + δiei) ≥ h(β̂) where δi 6= 0 (6.38)

and ei is a vector with a 1 at position i and zeros elsewhere. Then for any vector p in some open
neighborhood of β̂:

h(β̂ + p) ≥ h(β̂) (6.39)

i.e., β̂ is a local minimizer of h(β). Since h(β) is convex this implies that β̂ is also a global
minimizer.
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Proof. Recall that we can write the LASSO objective as:

h(β) = f(β) + g(β) (6.40)

where

f(β) = 1
2 ||y −Xβ||

2
2 (6.41)

g(β) = λ||β||1 = λ

p∑
i=1

|βi| (6.42)

Hence we can write:

h(β̂ + p) = f(β̂ + p) + g(β̂ + p) (6.43)

= f(β̂) + pT∇f(β̂) + 1
2p

TXTXp+ λ

p∑
i=1

|β̂i + pi| (6.44)

= f(β̂) + λ

p∑
i=1

|β̂i|+ pT∇f(β̂) + 1
2p

TXTXp+ λ

p∑
i=1

|β̂i + pi| − λ
p∑
i=1

|β̂i| (6.45)

= f(β̂) + g(β̂) + pT∇f(β̂) + 1
2p

TXTXp+ λ

p∑
i=1

|β̂i + pi| − λ
p∑
i=1

|β̂i| (6.46)

= h(β̂) + pT∇f(β̂) + 1
2p

TXTXp+ λ

p∑
i=1

|β̂i + pi| − λ
p∑
i=1

|β̂i| (6.47)

(6.48)

Let p = δiei in 6.43 with δi 6= 0 then we can write:

h(β̂ + δiei) = h(β̂) + δie
T
i ∇f(β̂) + 1

2δ
2
i e

T
i X

TXei + λ|β̂i + δi| − λ|β̂i| (6.49)

By assumption h(β̂ + δiei) ≥ h(β̂) and so we must have:

δie
T
i ∇f(β̂) + 1

2δ
2
i e

T
i X

TXei + λ|β̂i + δi| − λ|β̂i| ≥ 0 (6.50)

The above relationship holds for all δi not matter how small. By choosing |δi| sufficiently small, we
can make the term 1

2δ
2
i e

T
i X

TXei arbitrarily close to 0. Hence there exists θi > 0 such that for all
δi ∈ (−θi, θi) the following holds:

δie
T
i ∇f(β̂) + λ|β̂i + δi| − λ|β̂i| ≥ 0 (6.51)
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Now let

p =
p∑
i=1

δiei (6.52)

then from 6.43 we get:

h(β̂ + p) = h(β̂) +
p∑
i=1

δie
T
i ∇f(β̂) + 1

2p
TXTXp+ λ

p∑
i=1

|β̂i + δi| − λ
p∑
i=1

|β̂i| (6.53)

Note that 6.51 implies:

p∑
i=1

δie
T
i ∇f(β̂) + λ

p∑
i=1

|β̂i + δi| − λ
p∑
i=1

|β̂i| ≥ 0 (6.54)

Therefore from 6.53 and 6.54 we must have:

h(β̂ + p) = h(β̂) +
p∑
i=1

δie
T
i ∇f(β̂) + 1

2p
TXTXp+ λ

p∑
i=1

|β̂i + δi| − λ
p∑
i=1

|β̂i| (6.55)

≥ h(β̂) + 1
2p

TXTXp (6.56)

≥ h(β̂) by the positive semi-definiteness of XTX (6.57)

In other words, we have found an open neighborhood with δi ∈ (−θi, θi), θi > 0 such that for all p
of the form 6.52, h(β̂ + p) ≥ h(β̂). This implies that the co-ordinate wise minimizer β̂ is actually
a local minimizer (and hence by convexity a global minimizer) of h(β).

7 How to choose λ?

The L1 regularization parameter for LASSO can be chosen using cross validation. In brief,
given data (X,y), we partition the rows of X and y into K parts giving us K data/response
pairs: (X1,y1), (X2,y2), . . . , (XK ,yK). Let

(
X(−i),y(−i)) be the data/response pair obtained

by deleting the ith part (Xi,yi) from (X,y). Let β(−i)
lasso be the LASSO solution obtained using(

X(−i),y(−i)). Let ni be the number of data points in the ith data/response pair (Xi,yi). For a
given value of λ define the average cross validated mean squared error as:

CVMSE(λ) = 1
K

K∑
i=1

1
ni

∥∥∥∥(yi −Xi β
(−i)
lasso

)∥∥∥∥2

2

(7.1)
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Given a range of palusible values for λ we choose the optimal λ as the one that minimizes the
average cross validated mean squared error:

λ∗ = arg minλ CVMSE(λ) (7.2)

Figure 1 shows the process of choosing λ for an example data set using 10-fold cross-validation.
Figure 2 shows the optimal LASSO fit using λ∗ from Figure 1 as well as the estimated LASSO
coefficients.
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Figure 1: Average mean squared error across cross-validation folds (10-fold cross-validation) versus
the regularization parameter λ for an example data set. Arrow shows the location of λ∗.

8 Conclusions

This goal of this tutorial was to provide a simple yet self-contained introduction to the LASSO
[Tibshirani, 1996] technique for L1 regularized linear regression. We discussed an efficient algorithm
for optimizing the LASSO objective function - the ”shooting algorithm” of Fu [1998]. From a
practical point of view, we suggest a cross-validation based approach for choosing the regularization
parameter λ. We encourage the reader to learn more about LASSO by visiting Rob Tibshirani’s
LASSO page: http://www-stat.stanford.edu/~tibs/lasso.html.

MATLAB code for estimating a LASSO model along with example data can be downloaded from:
http://www.gautampendse.com/software/lasso/webpage/lasso_shooting.html.
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Figure 2: (a) Overlay of noisy data, true data and the LASSO fit obtained using λ∗ from Figure 1
(b) The true coefficients versus the LASSO estimated coefficients using λ∗ from Figure 1.
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